• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHAO Pengbo, ZHU Ying, YIN Lifang, et al. Progress of gene-mediated precision immunotherapy in the treatment of acute myeloid leukemia[J]. J China Pharm Univ, 2024, 55(1): 53 − 62. DOI: 10.11665/j.issn.1000-5048.2023112703
Citation: ZHAO Pengbo, ZHU Ying, YIN Lifang, et al. Progress of gene-mediated precision immunotherapy in the treatment of acute myeloid leukemia[J]. J China Pharm Univ, 2024, 55(1): 53 − 62. DOI: 10.11665/j.issn.1000-5048.2023112703

Progress of gene-mediated precision immunotherapy in the treatment of acute myeloid leukemia

Funds: This study was supported by the National Natural Science Foundation of China (No.82304410); the Natural Science Foundation of Jiangsu Province (No.BK20221045); the National Center of Technology Innovation for Biopharmaceuticals (No.NCTIB2022HS01015); and “Double First-Class” Initiative Program in China Pharmaceutical University
More Information
  • Received Date: November 26, 2023
  • Available Online: March 05, 2024
  • Acute myeloid leukemia (AML) is a disease caused by abnormal cloning of hematopoietic stem cells in the bone marrow, which leads to accumulation of a large number of abnormally differentiated myeloid cells. It is difficult to cure by traditional treatment. The successful application of chimeric antigen receptor T cell (CAR-T) immunotherapy indicates that the treatment of hematological tumors has entered a new stage of precision immunotherapy. However, CAR-T immunotherapy has been found to have many problems in clinical applications, including long treatment cycle, expensive prices, off-target effects, cytokine release syndrome, etc. Therefore, it is necessary to expand the application of CAR or adopt improved measures to enhance the therapeutic effect. This article reviews the new strategies for genetic engineering modification of CAR immune cells and the research progress and application of in situ programming to generate CAR-T, and besides, briefly introduces the new methods about the delivery of gene drugs in vivo, aiming to provide new ideas and theoretical basis for expanding and improving the application of precision immunotherapy in AML.

  • [1]
    Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management[J]. Am J Hematol, 2023, 98(3): 502-526. doi: 10.1002/ajh.26822
    [2]
    Zeng AGX, Bansal S, Jin LQ, et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia[J]. Nat Med, 2022, 28(6): 1212-1223. doi: 10.1038/s41591-022-01819-x
    [3]
    Rea B, Aggarwal N, Yatsenko SA, et al. Acute myeloid leukemia with isolated del(5q) is associated with IDH1/IDH2 mutations and better prognosis when compared to acute myeloid leukemia with complex karyotype including del(5q)[J]. Mod Pathol, 2020, 33(4): 566-575. doi: 10.1038/s41379-019-0396-4
    [4]
    Daver N, Schlenk RF, Russell NH, et al. Targeting FLT3 mutations in AML: review of current knowledge and evidence[J]. Leukemia, 2019, 33(2): 299-312. doi: 10.1038/s41375-018-0357-9
    [5]
    Rejeski K, Duque-Afonso J, Lübbert M. AML1/ETO and its function as a regulator of gene transcription via epigenetic mechanisms[J]. Oncogene, 2021, 40(38): 5665-5676. doi: 10.1038/s41388-021-01952-w
    [6]
    Falini B, Brunetti L, Sportoletti P, et al. NPM1-mutated acute myeloid leukemia: from bench to bedside[J]. Blood, 2020, 136(15): 1707-1721. doi: 10.1182/blood.2019004226
    [7]
    Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute myeloid leukemia[J]. Blood Rev, 2017, 31(1): 63-76. doi: 10.1016/j.blre.2016.08.005
    [8]
    Rajagopalan A, Feng YB, Gayatri MB, et al. A gain-of-function p53 mutant synergizes with oncogenic NRAS to promote acute myeloid leukemia in mice[J]. J Clin Invest, 2023, 133(24): e173116. doi: 10.1172/JCI173116
    [9]
    Wu GJ, Xu YX, Schultz RD, et al. LILRB3 supports acute myeloid leukemia development and regulates T-cell antitumor immune responses through the TRAF2-cFLIP-NF-κB signaling axis[J]. Nat Cancer, 2021, 2(11): 1170-1184. doi: 10.1038/s43018-021-00262-0
    [10]
    Daver N, Wei AH, Pollyea DA, et al. New directions for emerging therapies in acute myeloid leukemia: the next chapter[J]. Blood Cancer J, 2020, 10(10): 107. doi: 10.1038/s41408-020-00376-1
    [11]
    Chen KTJ, Gilabert-Oriol R, Bally MB, et al. Recent treatment advances and the role of nanotechnology, combination products, and immunotherapy in changing the therapeutic landscape of acute myeloid leukemia[J]. Pharm Res, 2019, 36(9): 125. doi: 10.1007/s11095-019-2654-z
    [12]
    Liu HT. Emerging agents and regimens for AML[J]. J Hematol Oncol, 2021, 14(1): 49. doi: 10.1186/s13045-021-01062-w
    [13]
    Anami Y, Deng M, Gui X, et al. LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid leukemia[J]. Mol Cancer Ther, 2020, 19(11): 2330-2339. doi: 10.1158/1535-7163.MCT-20-0407
    [14]
    Fu ZW, Li SJ, Han SF, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 93. doi: 10.1038/s41392-022-00947-7
    [15]
    Böhme M, Kayser S. Immune-based therapeutic strategies for acute myeloid leukemia[J]. Cancers, 2021, 14(1): 105. doi: 10.3390/cancers14010105
    [16]
    Barbullushi K, Rampi N, Serpenti F, et al. Vaccination therapy for acute myeloid leukemia: where do we stand[J]? Cancers, 2022, 14(12): 2994.
    [17]
    van de Loosdrecht AA, van Wetering S, Santegoets SJAM, et al. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia[J]. Cancer Immunol Immunother, 2018, 67(10): 1505-1518. doi: 10.1007/s00262-018-2198-9
    [18]
    Liu Y, An LN, Huang RH, et al. Strategies to enhance CAR-T persistence[J]. Biomark Res, 2022, 10(1): 86. doi: 10.1186/s40364-022-00434-9
    [19]
    June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer[J]. Science, 2018, 359(6382): 1361-1365. doi: 10.1126/science.aar6711
    [20]
    Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies[J]. Blood Cancer J, 2021, 11(4): 69. doi: 10.1038/s41408-021-00459-7
    [21]
    Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells[J]. Nat Rev Cancer, 2021, 21(3): 145-161. doi: 10.1038/s41568-020-00323-z
    [22]
    Fang F, Xie SQ, Chen MH, et al. Advances in NK cell production[J]. Cell Mol Immunol, 2022, 19(4): 460-481. doi: 10.1038/s41423-021-00808-3
    [23]
    Terrén I, Orrantia A, Vitallé J, et al. NK cell metabolism and tumor microenvironment[J]. Front Immunol, 2019, 10: 2278. doi: 10.3389/fimmu.2019.02278
    [24]
    Dagher OK, Posey AD Jr. Forks in the road for CAR T and CAR NK cell cancer therapies[J]. Nat Immunol, 2023, 24(12): 1994-2007. doi: 10.1038/s41590-023-01659-y
    [25]
    Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2): 86-104. doi: 10.3322/caac.21596
    [26]
    Xia JF, Minamino S, Kuwabara K. CAR-expressing NK cells for cancer therapy: a new hope[J]. Biosci Trends, 2020, 14(5): 354-359. doi: 10.5582/bst.2020.03308
    [27]
    Zhang LS, Liu M, Yang SJ, et al. Natural killer cells: of-the-shelf cytotherapy for cancer immunosurveillance[J]. Am J Cancer Res, 2021, 11(4): 1770-1791.
    [28]
    Bald T, Krummel MF, Smyth MJ, et al. The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies[J]. Nat Immunol, 2020, 21(8): 835-847. doi: 10.1038/s41590-020-0728-z
    [29]
    Albinger N, Pfeifer R, Nitsche M, et al. Primary CD33-targeting CAR-NK cells for the treatment of acute myeloid leukemia[J]. Blood Cancer J, 2022, 12(4): 61. doi: 10.1038/s41408-022-00660-2
    [30]
    Christodoulou I, Ho WJ, Marple A, et al. Engineering CAR-NK cells to secrete IL-15 sustains their anti-AML functionality but is associated with systemic toxicities[J]. J Immunother Cancer, 2021, 9(12): e003894. doi: 10.1136/jitc-2021-003894
    [31]
    Dong H, Ham JD, Hu GG, et al. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia[J]. Proc Natl Acad Sci U S A, 2022, 119(25): e2122379119. doi: 10.1073/pnas.2122379119
    [32]
    Boyiadzis M, Agha M, Redner RL, et al. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia[J]. Cytotherapy, 2017, 19(10): 1225-1232. doi: 10.1016/j.jcyt.2017.07.008
    [33]
    Huang RH, Wen Q, Wang XQ, et al. p522: off-the-shelf Cd33 car-nk cell therapy for relapse/refractory amL: first-in-human, phase I trial[J]. HemaSphere, 2023, 7(S3): e69938df. doi: 10.1097/01.HS9.0000968996.69938.df
    [34]
    Pellicci DG, Koay HF, Berzins SP. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge[J]. Nat Rev Immunol, 2020, 20(12): 756-770. doi: 10.1038/s41577-020-0345-y
    [35]
    Kriegsmann K, Kriegsmann M, von Bergwelt-Baildon M, et al. NKT cells - New players in CAR cell immunotherapy[J]? Eur J Haematol, 2018, 101(6): 750-757.
    [36]
    Hadiloo K, Tahmasebi S, Esmaeilzadeh A. CAR-NKT cell therapy: a new promising paradigm of cancer immunotherapy[J]. Cancer Cell Int, 2023, 23(1): 86. doi: 10.1186/s12935-023-02923-9
    [37]
    Karadimitris A, Ripoll-Fiol C, Guerra JC. Invariant NKT cells as a platform for CAR immunotherapy and prevention of acute Graft-versus-Host Disease[J]. Hemasphere, 2019, 3(Suppl): 31-34.
    [38]
    Juillerat A, Tkach D, Busser BW, et al. Modulation of chimeric antigen receptor surface expression by a small molecule switch[J]. BMC Biotechnol, 2019, 19(1): 44. doi: 10.1186/s12896-019-0537-3
    [39]
    Zhang B, Wang Y, Huang SL, et al. Photoswitchable CAR-T cell function in vitro and in vivo via a cleavable mediator[J]. Cell Chem Biol, 2021, 28(1): 60-69. e7.
    [40]
    Guo SJ, Gao XJ, Sadhana M, et al. Developing strategies to improve the efficacy of CAR-T therapy for acute myeloid leukemia[J]. Curr Treat Options Oncol, 2023, 24(11): 1614-1632. doi: 10.1007/s11864-023-01140-w
    [41]
    Flugel CL, Majzner RG, Krenciute G, et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours[J]. Nat Rev Clin Oncol, 2023, 20(1): 49-62. doi: 10.1038/s41571-022-00704-3
    [42]
    He X, Feng ZJ, Ma J, et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia[J]. Blood, 2020, 135(10): 713-723. doi: 10.1182/blood.2019002779
    [43]
    Kosti P, Opzoomer JW, Larios-Martinez KI, et al. Hypoxia-sensing CAR T cells provide safety and efficacy in treating solid tumors[J]. Cell Rep Med, 2021, 2(4): 100227. doi: 10.1016/j.xcrm.2021.100227
    [44]
    Juillerat A, Marechal A, Filhol JM, et al. An oxygen sensitive self-decision making engineered CAR T-cell[J]. Sci Rep, 2017, 7: 39833. doi: 10.1038/srep39833
    [45]
    Chen YF, Li J, Xu LL, et al. The genesis and evolution of acute myeloid leukemia stem cells in the microenvironment: from biology to therapeutic targeting[J]. Cell Death Discov, 2022, 8(1): 397. doi: 10.1038/s41420-022-01193-0
    [46]
    Richards RM, Zhao FF, Freitas KA, et al. NOT-gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity[J]. Blood Cancer Discov, 2021, 2(6): 648-665. doi: 10.1158/2643-3230.BCD-20-0208
    [47]
    Xin TQ, Cheng L, Zhou CC, et al. In-vivo induced CAR-T cell for the potential breakthrough to overcome the barriers of current CAR-T cell therapy[J]. Front Oncol, 2022, 12: 809754.
    [48]
    Bach PB. National coverage analysis of CAR-T therapies - policy, evidence, and payment[J]. N Engl J Med, 2018, 379(15): 1396-1398. doi: 10.1056/NEJMp1807382
    [49]
    Parayath NN, Stephan MT. In situ programming of CAR T cells[J]. Annu Rev Biomed Eng, 2021, 23: 385-405. doi: 10.1146/annurev-bioeng-070620-033348
    [50]
    Smith TT, Stephan SB, Moffett HF, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers[J]. Nat Nanotechnol, 2017, 12(8): 813-820.
    [51]
    Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing[J]. Nat Rev Drug Discov, 2017, 16(6): 387-399. doi: 10.1038/nrd.2016.280
    [52]
    Raguram A, Banskota S, Liu DR. Therapeutic in vivo delivery of gene editing agents[J]. Cell, 2022, 185(15): 2806-2827. doi: 10.1016/j.cell.2022.03.045
    [53]
    Pfeiffer A, Thalheimer FB, Hartmann S, et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome[J]. EMBO Mol Med, 2018, 10(11): e9158.
    [54]
    Ma G, Wang Y, Ahmed T, et al. Anti-CD19 chimeric antigen receptor targeting of CD19+ acute myeloid leukemia[J]. Leuk Res Rep, 2018, 9: 42-44.
    [55]
    Zhou JE, Sun L, Jia YJ, et al. Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo[J]. J Control Release, 2022, 350: 298-307. doi: 10.1016/j.jconrel.2022.08.033
    [56]
    Raes L, Stremersch S, Fraire JC, et al. Intracellular delivery of mRNA in adherent and suspension cells by vapor nanobubble photoporation[J]. Nanomicro Lett, 2020, 12(1): 185.
    [57]
    Gómez-Aguado I, Rodríguez-Castejón J, Vicente-Pascual M, et al. Nanomedicines to deliver mRNA: state of the art and future perspectives[J]. Nanomaterials, 2020, 10(2): 364. doi: 10.3390/nano10020364
    [58]
    Billingsley MM, Singh N, Ravikumar P, et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering[J]. Nano Lett, 2020, 20(3): 1578-1589. doi: 10.1021/acs.nanolett.9b04246
    [59]
    Billingsley MM, Hamilton AG, Mai D, et al. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells[J]. Nano Lett, 2022, 22(1): 533-542. doi: 10.1021/acs.nanolett.1c02503
    [60]
    Parayath NN, Stephan SB, Koehne AL, et al. In vitro - transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo[J]. Nat Commun, 2020, 11(1): 6080.
    [61]
    Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing[J]. Nat Nanotechnol, 2020, 15(4): 313-320. doi: 10.1038/s41565-020-0669-6
    [62]
    Cheng X, Fan SY, Wen CC, et al. CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges[J]. Brief Funct Genomics, 2020, 19(3): 209-214. doi: 10.1093/bfgp/elaa001
    [63]
    Ren XH, Xu C, Li LL, et al. A targeting delivery system for effective genome editing in leukemia cells to reverse malignancy[J]. J Control Release, 2022, 343: 645-656. doi: 10.1016/j.jconrel.2022.02.012
    [64]
    Ladikou EE, Chevassut T, Pepper CJ, et al. Dissecting the role of the CXCL12/CXCR4 axis in acute myeloid leukaemia[J]. Br J Haematol, 2020, 189(5): 815-825. doi: 10.1111/bjh.16456
    [65]
    Yu XB, Munoz-Sagredo L, Streule K, et al. CD44 loss of function sensitizes AML cells to the BCL-2 inhibitor venetoclax by decreasing CXCL12-driven survival cues[J]. Blood, 2021, 138(12): 1067-1080. doi: 10.1182/blood.2020006343
    [66]
    Ho TC, Kim HS, Chen YM, et al. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy[J]. Sci Adv, 2021, 7(21): eabg3217. doi: 10.1126/sciadv.abg3217
    [67]
    Montaño A, Ordoñez JL, Alonso-Pérez V, et al. ETV6/RUNX1 fusion gene abrogation decreases the oncogenicity of tumour cells in a preclinical model of acute lymphoblastic leukaemia[J]. Cells, 2020, 9(1): 215.
    [68]
    Vuelta E, Ordoñez JL, Alonso-Pérez V, et al. CRISPR-Cas9 technology as a tool to target gene drivers in cancer: proof of concept and new opportunities to treat chronic myeloid leukemia[J]. CRISPR J, 2021, 4(4): 519-535. doi: 10.1089/crispr.2021.0009
    [69]
    Yong SB, Chung JY, Kim SS, et al. CD64-targeted HO-1 RNA interference enhances chemosensitivity in orthotopic model of acute myeloid leukemia and patient-derived bone marrow cells[J]. Biomaterials, 2020, 230: 119651. doi: 10.1016/j.biomaterials.2019.119651
    [70]
    Heuts BMH, Arza-Apalategi S, Alkema SG, et al. Inducible MLL-AF9 expression drives an AML program during human pluripotent stem cell-derived hematopoietic differentiation[J]. Cells, 2023, 12(8): 1195. doi: 10.3390/cells12081195
    [71]
    Haferlach T, Meggendorfer M. More than a fusion gene: the RUNX1- RUNX1T1 AML[J]. Blood, 2019, 133(10): 1006-1007. doi: 10.1182/blood-2019-01-896076
    [72]
    Issa H, Swart LE, Rasouli M, et al. Nanoparticle-mediated targeting of the fusion gene RUNX1/ETO in t(8;21)-positive acute myeloid leukaemia[J]. Leukemia, 2023, 37(4): 820-834. doi: 10.1038/s41375-023-01854-8
    [73]
    Mohammed SA, Ju Y. Multifunctional liposomal nanostructure-mediated siRNA/bortezomib co-delivery for SHARP1 knockdown in MLL-AF6 acute myeloid leukemia[J]. Biomater Adv, 2022, 134: 112663. doi: 10.1016/j.msec.2022.112663
    [74]
    Gauthier L, Virone-Oddos A, Beninga J, et al. Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123[J]. Nat Biotechnol, 2023, 41(9): 1296-1306. doi: 10.1038/s41587-022-01626-2
    [75]
    Guo JF, Russell EG, Darcy R, et al. Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy[J]. Mol Pharm, 2017, 14(3): 940-952. doi: 10.1021/acs.molpharmaceut.6b01150
  • Related Articles

    [1]TANG Linfang, ZHANG Ziqiang, SU Rina, HE Shuwang, YAO Jing. Advances in taste-masking technology of oral paediatric medicine[J]. Journal of China Pharmaceutical University, 2017, 48(2): 135-141. DOI: 10.11665/j.issn.1000-5048.20170202
    [2]DENG Yan-ping, XIAO Yan-yu, PING Qi-neng, GU Xiao-zhen, BAO Quan-ying. Combined system of sinomenine hydrochloride sustained-release pellets[J]. Journal of China Pharmaceutical University, 2009, 40(3): 222-226.
    [3]Preparation of Turbutaline Sulphate Pulsatile Controlled-release Pellets[J]. Journal of China Pharmaceutical University, 2004, (4): 17-20.
    [4]Studies on Famotidine Pulsatile Controlled-Release Capsules[J]. Journal of China Pharmaceutical University, 1997, (3): 25-29.
    [6]Study on the Controlled-Release System of Propranolol Hydrochloride[J]. Journal of China Pharmaceutical University, 1994, (2): 83-87.
    [7]Studies on Isosorbide- 5- Mononitrate Controlled Release Tablets[J]. Journal of China Pharmaceutical University, 1993, (6): 327-330.
    [8]Studies on Controlled Release Tablet of Piroxicam[J]. Journal of China Pharmaceutical University, 1990, (4): 201-204.
    [9]DEVELOPMENT OF CONTROLLED-RELEASE CHLORPHENIRAMINE PELLETS[J]. Journal of China Pharmaceutical University, 1985, (1): 28-37.
    [10]Li Hanyun, Li Fengwen, Liu Guojie, Chen Shuguang, Cheng Yun. PREDICTION OF SHELF-LIFE OF CONTROLLED- RELEASE OPHTHALMIC FILM OF PILOCARPINE[J]. Journal of China Pharmaceutical University, 1984, (3): 1-5.
  • Cited by

    Periodical cited type(2)

    1. 杨婧雯,陈芊,单云龙,刘嘉莉,尉宁,王婧,王广基,周芳. 间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展. 中国药科大学学报. 2024(01): 103-114 . 本站查看
    2. 张强,罗曦,韩丽颖,王帅,包永睿,李天娇,孟宪生. 基于代谢组学研究hUC-MSCs-Exos联合复方木鸡颗粒抑制人肝癌细胞SMMC-7721增殖机制. 中华中医药杂志. 2024(10): 5481-5487 .

    Other cited types(1)

Catalog

    Article views (221) PDF downloads (21) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return