Citation: | SUN Liting, ZHANG Weiguo, TONG Yue. Research progress on targeted protein S-palmitoylation modification in T cell immunotherapy[J]. J China Pharm Univ, 2024, 55(1): 45 − 52. DOI: 10.11665/j.issn.1000-5048.2023112903 |
S-palmitoylation, a reversible and dynamic post-translational modification in cells, is involved in regulating the transcription and expression of downstream target genes as well as signal transduction, thereby affecting cell life activities. Studies have shown that thousands of human proteins undergo S-palmitoylation modification, suggesting that S-palmitoylation is closely related to the progression and treatment of diseases. T cells play central roles in anti-tumor immune responses. A variety of T cell immune-related proteins are regulated by S-palmitoylation. In the present study, we focus on the impact of S-palmitoylation on T cell signal transduction and its application in T cell immunotherapy, aiming to provide new ideas for the development of new targets and peptide inhibitors for T cell immunotherapy.
[1] |
Jiang H, Zhang XY, Chen X, et al. Protein lipidation: occurrence, mechanisms, biological functions, and enabling technologies[J]. Chem Rev, 2018, 118(3): 919-988. doi: 10.1021/acs.chemrev.6b00750
|
[2] |
De I, Sadhukhan S. Emerging roles of DHHC-mediated protein S-palmitoylation in physiological and pathophysiological context[J]. Eur J Cell Biol, 2018, 97(5): 319-338. doi: 10.1016/j.ejcb.2018.03.005
|
[3] |
Chen JJ, Fan Y, Boehning D. Regulation of dynamic protein S-acylation[J]. Front Mol Biosci, 2021, 8: 656440. doi: 10.3389/fmolb.2021.656440
|
[4] |
Zhang YQ, Qin ZR, Sun WH, et al. Function of protein S-palmitoylation in immunity and immune-related diseases[J]. Front Immunol, 2021, 12: 661202. doi: 10.3389/fimmu.2021.661202
|
[5] |
Stix R, Lee CJ, Faraldo-Gómez JD, et al. Structure and mechanism of DHHC protein acyltransferases[J]. J Mol Biol, 2020, 432(18): 4983-4998. doi: 10.1016/j.jmb.2020.05.023
|
[6] |
Shen ZC, Xia ZX, Liu JM, et al. APT1-mediated depalmitoylation regulates hippocampal synaptic plasticity[J]. J Neurosci, 2022, 42(13): 2662-2677. doi: 10.1523/JNEUROSCI.1741-21.2022
|
[7] |
Han SZ, Wang RK, Zhang YN, et al. The role of ubiquitination and deubiquitination in tumor invasion and metastasis[J]. Int J Biol Sci, 2022, 18(6): 2292-2303. doi: 10.7150/ijbs.69411
|
[8] |
Chum T, Glatzová D, Kvíčalová Z, et al. The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins[J]. J Cell Sci, 2016, 129(15): 3053. doi: 10.1242/jcs.194209
|
[9] |
Jin JY, Zhi XL, Wang XH, et al. Protein palmitoylation and its pathophysiological relevance[J]. J Cell Physiol, 2021, 236(5): 3220-3233. doi: 10.1002/jcp.30122
|
[10] |
Zhang YL, Yan L, Ju FY, et al. Research progress of palmitoylation in non-alcoholic fatty liver disease and related liver diseases[J]. J China Pharm Univ (中国药科大学学报), 2023, 54(5): 536-543. doi: 10.11665/j.issn.1000-5048.2023040602
|
[11] |
Gaud G, Lesourne R, Love PE. Regulatory mechanisms in T cell receptor signalling[J]. Nat Rev Immunol, 2018, 18(8): 485-497. doi: 10.1038/s41577-018-0020-8
|
[12] |
Shah K, Al-Haidari A, Sun JM, et al. T cell receptor (TCR) signaling in health and disease[J]. Signal Transduct Target Ther, 2021, 6(1): 412. doi: 10.1038/s41392-021-00823-w
|
[13] |
Au-Yeung BB, Shah NH, Shen L, et al. ZAP-70 in signaling, biology, and disease[J]. Annu Rev Immunol, 2018, 36: 127-156. doi: 10.1146/annurev-immunol-042617-053335
|
[14] |
Tousley AM, Rotiroti MC, Labanieh L, et al. Co-opting signalling molecules enables logic-gated control of CAR T cells[J]. Nature, 2023, 615(7952): 507-516. doi: 10.1038/s41586-023-05778-2
|
[15] |
Katz ZB, Novotná L, Blount A, et al. A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli[J]. Nat Immunol, 2017, 18(1): 86-95. doi: 10.1038/ni.3631
|
[16] |
Bawden E, Gebhardt T. The multifaceted roles of CD4+ T cells and MHC class II in cancer surveillance[J]. Curr Opin Immunol, 2023, 83: 102345. doi: 10.1016/j.coi.2023.102345
|
[17] |
Fragoso R, Ren DJ, Zhang XP, et al. Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling[J]. J Immunol, 2003, 170(2): 913-921. doi: 10.4049/jimmunol.170.2.913
|
[18] |
Yurchak LK, Sefton BM. Palmitoylation of either Cys-3 or Cys-5 is required for the biological activity of the Lck tyrosine protein kinase[J]. Mol Cell Biol, 1995, 15(12): 6914-6922. doi: 10.1128/MCB.15.12.6914
|
[19] |
Fan Y, Shayahati B, Tewari R, et al. Regulation of T cell receptor signaling by protein acyltransferase DHHC21[J]. Mol Biol Rep, 2020, 47(8): 6471-6478. doi: 10.1007/s11033-020-05691-1
|
[20] |
Lo WL, Shah NH, Ahsan N, et al. Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT[J]. Nat Immunol, 2018, 19(7): 733-741. doi: 10.1038/s41590-018-0131-1
|
[21] |
Tewari R, Shayahati B, Fan Y, et al. T cell receptor-dependent S-acylation of ZAP-70 controls activation of T cells[J]. J Biol Chem, 2021, 296: 100311. doi: 10.1016/j.jbc.2021.100311
|
[22] |
Negishi I, Motoyama N, Nakayama K, et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes[J]. Nature, 1995, 376(6539): 435-438. doi: 10.1038/376435a0
|
[23] |
Zhang W, Trible RP, Samelson LE. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation[J]. Immunity, 1998, 9(2): 239-246. doi: 10.1016/S1074-7613(00)80606-8
|
[24] |
Larghi P, Williamson DJ, Carpier JM, et al. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites[J]. Nat Immunol, 2013, 14(7): 723-731. doi: 10.1038/ni.2609
|
[25] |
Morrison E, Wegner T, Zucchetti AE, et al. Dynamic palmitoylation events following T-cell receptor signaling[J]. Commun Biol, 2020, 3(1): 368. doi: 10.1038/s42003-020-1063-5
|
[26] |
Fredericks GJ, Hoffmann FW, Rose AH, et al. Stable expression and function of the inositol 1, 4, 5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex[J]. Proc Natl Acad Sci U S A, 2014, 111(46): 16478-16483. doi: 10.1073/pnas.1417176111
|
[27] |
Kamp ME, Liu YT, Kortholt A. Function and regulation of heterotrimeric G proteins during chemotaxis[J]. Int J Mol Sci, 2016, 17(1): 90. doi: 10.3390/ijms17010090
|
[28] |
Roy R, Alotaibi AA, Freedman MS. Sphingosine 1-phosphate receptor modulators for multiple sclerosis[J]. CNS Drugs, 2021, 35(4): 385-402. doi: 10.1007/s40263-021-00798-w
|
[29] |
Badawy SMM, Okada T, Kajimoto T, et al. DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling[J]. Sci Rep, 2017, 7(1): 16552. doi: 10.1038/s41598-017-16457-4
|
[30] |
Wu YL, Chen WY, Xu ZP, et al. PD-L1 distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition[J]. Front Immunol, 2019, 10: 2022. doi: 10.3389/fimmu.2019.02022
|
[31] |
Yao H, Lan J, Li CS, et al. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours[J]. Nat Biomed Eng, 2019, 3(4): 306-317. doi: 10.1038/s41551-019-0375-6
|
[32] |
Zhang MM, Zhou LX, Xu YJ, et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis[J]. Nature, 2020, 586(7829): 434-439. doi: 10.1038/s41586-020-2799-2
|
[33] |
Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 cells[J]. Annu Rev Immunol, 2009, 27: 485-517. doi: 10.1146/annurev.immunol.021908.132710
|
[34] |
Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J]. Nat Rev Clin Oncol, 2018, 15(4): 234-248. doi: 10.1038/nrclinonc.2018.8
|
[35] |
Jiang Y, Xu YJ, Zhu CL, et al. STAT3 palmitoylation initiates a positive feedback loop that promotes the malignancy of hepatocellular carcinoma cells in mice[J]. Sci Signal, 2023, 16(814): eadd2282. doi: 10.1126/scisignal.add2282
|
[36] |
Timmer T, de Vries EGE, de Jong S. Fas receptor-mediated apoptosis: a clinical application[J]? J Pathol, 2002, 196(2): 125-134. doi: 10.1002/path.1028
|
[37] |
Ohno Y, Kihara A, Sano T, et al. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins[J]. Biochim Biophys Acta, 2006, 1761(4): 474-483. doi: 10.1016/j.bbalip.2006.03.010
|
[38] |
Rossin A, Durivault J, Chakhtoura-Feghali T, et al. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability[J]. Cell Death Differ, 2015, 22(4): 643-653. doi: 10.1038/cdd.2014.153
|
[39] |
Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease: mechanisms and management[J]. Gastroenterology, 2022, 162(3): 715-730. e3.
|
[40] |
Xia CF, Dong XS, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. doi: 10.1097/CM9.0000000000002108
|
[41] |
André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218. doi: 10.1056/NEJMoa2017699
|
[42] |
Du W, Hua F, Li X, et al. Loss of optineurin drives cancer immune evasion via palmitoylation-dependent IFNGR1 lysosomal sorting and degradation[J]. Cancer Discov, 2021, 11(7): 1826-1843. doi: 10.1158/2159-8290.CD-20-1571
|
[43] |
Gauthaman A, Jacob R, Pasupati S, et al. Novel peptide-based inhibitor for targeted inhibition of T cell function[J]. J Cell Commun Signal, 2022, 16(3): 349-359. doi: 10.1007/s12079-021-00660-0
|
[1] | YIN Hao, WANG Wei, MIN Qianhao. Advances in mass-encoded probes for multiplex mass spectrometric detection[J]. Journal of China Pharmaceutical University, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902 |
[2] | WANG Maolin, GUO Weiwei, ZHENG Yueqin. Advances in fluorescence probes for detection of hydrogen polysulfides[J]. Journal of China Pharmaceutical University, 2023, 54(5): 553-563. DOI: 10.11665/j.issn.1000-5048.2023042804 |
[3] | CHEN Yue, HAO Meixi, JU Caoyun, ZHANG Can. Design, synthesis and application of AIE fluorescent probe for lipid raft[J]. Journal of China Pharmaceutical University, 2020, 51(5): 514-521. DOI: 10.11665/j.issn.1000-5048.20200502 |
[4] | GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203 |
[5] | GUO Anping, JIANG Fen, XU Xiaoli, YOU Qidong, LI Yuyan. Design, synthesis and biological application of affinity-based small molecular probe for Hsp90 endoplasmic reticulum paralogue of Grp94[J]. Journal of China Pharmaceutical University, 2019, 50(2): 161-167. DOI: 10.11665/j.issn.1000-5048.20190205 |
[6] | WANG Shuo, SUN Xiaoyan, CHEN Jinlong. Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid[J]. Journal of China Pharmaceutical University, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111 |
[7] | LI Li, XU Fengguo, CHEN Jinlong. Exploration of enzyme-MnO2 nanosheets hybridization probe for sensitively colorimetric self-indicating of glucose[J]. Journal of China Pharmaceutical University, 2017, 48(4): 453-460. DOI: 10.11665/j.issn.1000-5048.20170410 |
[8] | ZHOU Lin, LIU Wei, DI Bin, CHEN Jinlong. Synthesis and application of a fluorescent molecular probe for rapid detection of sulfur dioxide residues in traditional Chinese herbs[J]. Journal of China Pharmaceutical University, 2015, 46(4): 444-449. DOI: 10.11665/j.issn.1000-5048.20150410 |
[9] | ZHAO Zekai, WANG Lu, XUE Jingwei, ZHANG Can. Development of reduction response probes[J]. Journal of China Pharmaceutical University, 2014, 45(5): 535-539. DOI: 10.11665/j.issn.1000-5048.20140505 |
[10] | ZHAO Bo, CHEN Jiang-ning, ZHANG Jun-feng. Copper (II) fluorescent probe for detecting nitric oxide[J]. Journal of China Pharmaceutical University, 2011, 42(6): 490-494. |