Citation: | CUI Zhenzhen, ZHAO Yifan, SUN Yu, et al. Research progress of drugs for cancer immunotherapy based on CCL2/CCR2 signaling axis[J]. J China Pharm Univ, 2024, 55(1): 36 − 44. DOI: 10.11665/j.issn.1000-5048.2023112904 |
C-C motif chemokine ligand 2 (CCL2) and its receptor CCR2 are closely related to tumorigenesis and tumor progression. The CCL2/CCR2 signaling axis promotes tumor progression through multiple mechanisms: CCL2 binds to CCR2 on the surface of tumor cells, and thus promotes tumor growth/survival and metastasis; more importantly, CCL2 recruits a variety of immunosuppressive cells to aggregate in the tumor microenvironment, and inhibits the function and activity of immune cells, promoting tumor progression. The article reviews the CCL2/CCR2 signaling axis and its role in tumors and tumor microenvironment, with particular focus on the advances in clinical research on drugs targeting CCL2/CCR2 signaling axis, in order to gain an in-depth and overall understanding of the mechanism of action of CCL2/CCR2 axis in tumor progression and develop more effective anti-tumor immunotherapeutic agents.
[1] |
Tian X, Wang JY, Jiang LX, et al. Chemokine/GPCR signaling-mediated EMT in cancer metastasis[J]. J Oncol, 2022, 2022: 2208176.
|
[2] |
O’Connor T, Borsig L, Heikenwalder M. CCL2-CCR2 signaling in disease pathogenesis[J]. Endocr Metab Immune Disord Drug Targets, 2015, 15(2): 105-118. doi: 10.2174/1871530315666150316120920
|
[3] |
Ermakov EA, Mednova IA, Boiko AS, et al. Chemokine dysregulation and neuroinflammation in schizophrenia: a systematic review[J]. Int J Mol Sci, 2023, 24(3): 2215. doi: 10.3390/ijms24032215
|
[4] |
Zhang HX, Yang K, Chen F, et al. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications[J]. Front Immunol, 2022, 13: 975367. doi: 10.3389/fimmu.2022.975367
|
[5] |
He SY, Yao L, Li J. Role of MCP-1/CCR2 axis in renal fibrosis: mechanisms and therapeutic targeting[J]. Medicine, 2023, 102(42): e35613. doi: 10.1097/MD.0000000000035613
|
[6] |
Moadab F, Khorramdelazad H, Abbasifard M. Role of CCL2/CCR2 axis in the immunopathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches[J]. Life Sci, 2021, 269: 119034. doi: 10.1016/j.lfs.2021.119034
|
[7] |
Hu QQ, Wen ZF, Huang QT, et al. CC chemokine receptor 2 (CCR2) expression promotes diffuse large B-Cell lymphoma survival and invasion[J]. Lab Investig, 2022, 102: 1377-1388. doi: 10.1038/s41374-022-00824-5
|
[8] |
Liu W, Wang L, Zhang JJ, et al. CC chemokine 2 promotes ovarian cancer progression through the MEK/ERK/MAP3K19 signaling pathway[J]. Int J Mol Sci, 2023, 24(13): 10652. doi: 10.3390/ijms241310652
|
[9] |
Wolf MJ, Hoos A, Bauer J, et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway[J]. Cancer Cell, 2012, 22(1): 91-105. doi: 10.1016/j.ccr.2012.05.023
|
[10] |
Kadomoto S, Izumi K, Mizokami A. Roles of CCL2-CCR2 axis in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(16): 8530. doi: 10.3390/ijms22168530
|
[11] |
Ahmad Mir M, Jan U, Ishfaq. CCL2–CCR2 signaling axis in cancer[M]//Mir MA. Cytokine and Chemokine Networks in Cancer. Singapore: Springer, 2023: 241-270.
|
[12] |
Sugiyama S, Yumimoto K, Fujinuma S, et al. Identification of effective CCR2 inhibitors for cancer therapy using humanized mice[J]. J Biochem, 2023: mvad086.
|
[13] |
Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation[J]. J Biol Chem, 2008, 283(36): 25057-25073. doi: 10.1074/jbc.M801073200
|
[14] |
Xu WX, Wei Q, Han MJ, et al. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer[J]. Int J Biol Sci, 2018, 14(9): 1054-1066. doi: 10.7150/ijbs.25349
|
[15] |
Wang T, Zhan QY, Peng XD, et al. CCL2 influences the sensitivity of lung cancer A549 cells to docetaxel[J]. Oncol Lett, 2018, 16(1): 1267-1274.
|
[16] |
Natsagdorj A, Izumi K, Hiratsuka K, et al. CCL2 induces resistance to the antiproliferative effect of cabazitaxel in prostate cancer cells[J]. Cancer Sci, 2019, 110(1): 279-288. doi: 10.1111/cas.13876
|
[17] |
Fang WB, Sofia Acevedo D, Smart C, et al. Expression of CCL2/CCR2 signaling proteins in breast carcinoma cells is associated with invasive progression[J]. Sci Rep, 2021, 11(1): 8708. doi: 10.1038/s41598-021-88229-0
|
[18] |
Liu W, Wang L, Zhang JJ, et al. Purification of recombinant human chemokine CCL2 in E. coli and its function in ovarian cancer[J]. 3 Biotech, 2021, 11(1): 8. doi: 10.1007/s13205-020-02571-0
|
[19] |
Liu MM, Yang J, Xu BS, et al. Tumor metastasis: Mechanistic insights and therapeutic interventions[J]. MedComm, 2021, 2(4): 587-617. doi: 10.1002/mco2.100
|
[20] |
Zhuang HJ, Cao G, Kou CH, et al. CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition invitro through activation of the Hedgehog pathway[J]. Oncol Rep, 2018, 39(1): 21-30.
|
[21] |
Yang J, Lv X, Chen JN, et al. CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway[J]. Oncotarget, 2016, 7(13): 15632-15647. doi: 10.18632/oncotarget.6695
|
[22] |
Liu JF, Chen PC, Chang TM, et al. Monocyte chemoattractant protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 254. doi: 10.1186/s13046-020-01756-y
|
[23] |
Li S, Lu J, Chen Y, et al. MCP-1-induced ERK/GSK-3β/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells[J]. Cell Mol Immunol, 2017, 14(7): 621-630. doi: 10.1038/cmi.2015.106
|
[24] |
Liu J, Chen S, Wang W, et al. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways[J]. Cancer Lett, 2016, 379(1): 49-59. doi: 10.1016/j.canlet.2016.05.022
|
[25] |
Siddiqui JA, Seshacharyulu P, Muniyan S, et al. GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation[J]. Bone Res, 2022, 10(1): 6. doi: 10.1038/s41413-021-00178-6
|
[26] |
Adinew GM, Messeha S, Taka E, et al. Thymoquinone inhibition of chemokines in TNF-α-induced inflammatory and metastatic effects in triple-negative breast cancer cells[J]. Int J Mol Sci, 2023, 24(12): 9878. doi: 10.3390/ijms24129878
|
[27] |
Yoshimura T, Li CN, Wang YZ, et al. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis[J]. Cell Mol Immunol, 2023, 20(7): 714-738. doi: 10.1038/s41423-023-01013-0
|
[28] |
Cho HR, Kumari N, Thi Vu H, et al. Increased antiangiogenic effect by blocking CCL2-dependent macrophages in a rodent glioblastoma model: correlation study with dynamic susceptibility contrast perfusion MRI[J]. Sci Rep, 2019, 9(1): 11085. doi: 10.1038/s41598-019-47438-4
|
[29] |
Yang XQ, Lu PR, Ishida Y, et al. Attenuated liver tumor formation in the absence of CCR2 with a concomitant reduction in the accumulation of hepatic stellate cells, macrophages and neovascularization[J]. Int J Cancer, 2006, 118(2): 335-345. doi: 10.1002/ijc.21371
|
[30] |
Huang XQ, Cao JS, Zu XY. Tumor-associated macrophages: an important player in breast cancer progression[J]. Thorac Cancer, 2022, 13(3): 269-276. doi: 10.1111/1759-7714.14268
|
[31] |
Su WJ, Han HH, Wang Y, et al. The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression[J]. Cancer Cell, 2019, 36(2): 139-155. e10.
|
[32] |
Goenka A, Khan F, Verma B, et al. Tumor microenvironment signaling and therapeutics in cancer progression[J]. Cancer Commun, 2023, 43(5): 525-561. doi: 10.1002/cac2.12416
|
[33] |
Shu YH, Cheng P. Targeting tumor-associated macrophages for cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188434. doi: 10.1016/j.bbcan.2020.188434
|
[34] |
Xu MS, Wang Y, Xia RL, et al. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting[J]. Cell Prolif, 2021, 54(10): e13115. doi: 10.1111/cpr.13115
|
[35] |
Han CY, Zhong JY, Hu JQ, et al. Single-sample node entropy for molecular transition in pre-deterioration stage of cancer[J]. Front Bioeng Biotechnol, 2020, 8: 809. doi: 10.3389/fbioe.2020.00809
|
[36] |
Liu CF, Zhang WH, Wang JF, et al. Tumor-associated macrophage-derived transforming growth factor-β promotes colorectal cancer progression through HIF1-TRIB3 signaling[J]. Cancer Sci, 2021, 112(10): 4198-4207. doi: 10.1111/cas.15101
|
[37] |
Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3): 633-642.
|
[38] |
Pan YY, Yu YD, Wang XJ, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. doi: 10.3389/fimmu.2020.583084
|
[39] |
Zhu SP, Liu M, Bennett S, et al. The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases[J]. J Cell Physiol, 2021, 236(10): 7211-7222. doi: 10.1002/jcp.30375
|
[40] |
Rashid MH, Borin TF, Ara R, et al. Critical immunosuppressive effect of MDSC-derived exosomes in the tumor microenvironment[J]. Oncol Rep, 2021, 45(3): 1171-1181. doi: 10.3892/or.2021.7936
|
[41] |
Tcyganov E, Mastio J, Chen E, et al. Plasticity of myeloid-derived suppressor cells in cancer[J]. Curr Opin Immunol, 2018, 51: 76-82. doi: 10.1016/j.coi.2018.03.009
|
[42] |
Tumino N, di Pace AL, Besi F, et al. Interaction between MDSC and NK cells in solid and hematological malignancies: impact on HSCT[J]. Front Immunol, 2021, 12: 638841. doi: 10.3389/fimmu.2021.638841
|
[43] |
Groth C, Hu XY, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression[J]. Br J Cancer, 2019, 120: 16-25. doi: 10.1038/s41416-018-0333-1
|
[44] |
Nagaraj S, Schrum AG, Cho HI, et al. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells[J]. J Immunol, 2010, 184(6): 3106-3116. doi: 10.4049/jimmunol.0902661
|
[45] |
Chun E, Lavoie S, Michaud M, et al. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function[J]. Cell Rep, 2015, 12(2): 244-257. doi: 10.1016/j.celrep.2015.06.024
|
[46] |
Gu HT, Deng WS, Zheng Z, et al. CCL2 produced by pancreatic ductal adenocarcinoma is essential for the accumulation and activation of monocytic myeloid-derived suppressor cells[J]. Immun Inflamm Dis, 2021, 9(4): 1686-1695. doi: 10.1002/iid3.523
|
[47] |
Vetsika EK, Koukos A, Kotsakis A. Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer[J]. Cells, 2019, 8(12): 1647. doi: 10.3390/cells8121647
|
[48] |
Ben Khelil M, Godet Y, Abdeljaoued S, et al. Harnessing antitumor CD4+ T cells for cancer immunotherapy[J]. Cancers, 2022, 14(1): 260. doi: 10.3390/cancers14010260
|
[49] |
Maimela NR, Liu SS, Zhang Y. Fates of CD8+ T cells in tumor microenvironment[J]. Comput Struct Biotechnol J, 2019, 17: 1-13. doi: 10.1016/j.csbj.2018.11.004
|
[50] |
Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation[J]. Nat Immunol, 2001, 2(2): 102-107. doi: 10.1038/84205
|
[51] |
Ge YZ, Böhm HH, Rathinasamy A, et al. Tumor-specific regulatory T cells from the bone marrow orchestrate antitumor immunity in breast cancer[J]. Cancer Immunol Res, 2019, 7(12): 1998-2012. doi: 10.1158/2326-6066.CIR-18-0763
|
[52] |
Loyher PL, Rochefort J, Baudesson de Chanville C, et al. CCR2 influences T regulatory cell migration to tumors and serves as a biomarker of cyclophosphamide sensitivity[J]. Cancer Res, 2016, 76(22): 6483-6494. doi: 10.1158/0008-5472.CAN-16-0984
|
[53] |
Jiang XJ, Wang J, Deng XY, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019, 18(1): 10. doi: 10.1186/s12943-018-0928-4
|
[54] |
Yi M, Zheng XL, Niu MK, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022, 21(1): 28. doi: 10.1186/s12943-021-01489-2
|
[55] |
Li XC, He GJ, Liu JC, et al. CCL2-mediated monocytes regulate immune checkpoint blockade resistance in pancreatic cancer[J]. Int Immunopharmacol, 2022, 106: 108598. doi: 10.1016/j.intimp.2022.108598
|
[56] |
Pu YZ, Ji Q. Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression[J]. Front Immunol, 2022, 13: 874589. doi: 10.3389/fimmu.2022.874589
|
[57] |
Tu MM, Abdel-Hafiz HA, Jones RT, et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy[J]. Commun Biol, 2020, 3(1): 720. doi: 10.1038/s42003-020-01441-y
|
[58] |
Flores-Toro JA, Luo DF, Gopinath A, et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas[J]. Proc Natl Acad Sci U S A, 2020, 117(2): 1129-1138. doi: 10.1073/pnas.1910856117
|
[59] |
Wang Y, Zhang XK, Yang LL, et al. Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer[J]. J Bone Oncol, 2018, 11: 27-32. doi: 10.1016/j.jbo.2018.01.002
|
[60] |
Shi LR, Wang JJ, Ding NH, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy[J]. Nat Commun, 2019, 10(1): 5421. doi: 10.1038/s41467-019-13204-3
|
[61] |
Sandhu SK, Papadopoulos K, Fong PC, et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors[J]. Cancer Chemother Pharmacol, 2013, 71(4): 1041-1050. doi: 10.1007/s00280-013-2099-8
|
[62] |
Rasmussen RK, Etzerodt A. Therapeutic targeting of tumor-associated macrophages[J]. Adv Pharmacol, 2021, 91: 185-211.
|
[63] |
Lim SY, Yuzhalin AE, Gordon-Weeks AN, et al. Targeting the CCL2-CCR2 signaling axis in cancer metastasis[J]. Oncotarget, 2016, 7(19): 28697-28710. doi: 10.18632/oncotarget.7376
|
[1] | YIN Hao, WANG Wei, MIN Qianhao. Advances in mass-encoded probes for multiplex mass spectrometric detection[J]. Journal of China Pharmaceutical University, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902 |
[2] | WANG Maolin, GUO Weiwei, ZHENG Yueqin. Advances in fluorescence probes for detection of hydrogen polysulfides[J]. Journal of China Pharmaceutical University, 2023, 54(5): 553-563. DOI: 10.11665/j.issn.1000-5048.2023042804 |
[3] | CHEN Yue, HAO Meixi, JU Caoyun, ZHANG Can. Design, synthesis and application of AIE fluorescent probe for lipid raft[J]. Journal of China Pharmaceutical University, 2020, 51(5): 514-521. DOI: 10.11665/j.issn.1000-5048.20200502 |
[4] | GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203 |
[5] | GUO Anping, JIANG Fen, XU Xiaoli, YOU Qidong, LI Yuyan. Design, synthesis and biological application of affinity-based small molecular probe for Hsp90 endoplasmic reticulum paralogue of Grp94[J]. Journal of China Pharmaceutical University, 2019, 50(2): 161-167. DOI: 10.11665/j.issn.1000-5048.20190205 |
[6] | WANG Shuo, SUN Xiaoyan, CHEN Jinlong. Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid[J]. Journal of China Pharmaceutical University, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111 |
[7] | LI Li, XU Fengguo, CHEN Jinlong. Exploration of enzyme-MnO2 nanosheets hybridization probe for sensitively colorimetric self-indicating of glucose[J]. Journal of China Pharmaceutical University, 2017, 48(4): 453-460. DOI: 10.11665/j.issn.1000-5048.20170410 |
[8] | ZHOU Lin, LIU Wei, DI Bin, CHEN Jinlong. Synthesis and application of a fluorescent molecular probe for rapid detection of sulfur dioxide residues in traditional Chinese herbs[J]. Journal of China Pharmaceutical University, 2015, 46(4): 444-449. DOI: 10.11665/j.issn.1000-5048.20150410 |
[9] | ZHAO Zekai, WANG Lu, XUE Jingwei, ZHANG Can. Development of reduction response probes[J]. Journal of China Pharmaceutical University, 2014, 45(5): 535-539. DOI: 10.11665/j.issn.1000-5048.20140505 |
[10] | ZHAO Bo, CHEN Jiang-ning, ZHANG Jun-feng. Copper (II) fluorescent probe for detecting nitric oxide[J]. Journal of China Pharmaceutical University, 2011, 42(6): 490-494. |