Citation: | DENG Zhen, HUANG Wei, WANG Xiaoqin. Effects of Pseudomonas aeruginosa PmrB△Leu172 mutation on polymyxin B resistance[J]. J China Pharm Univ, 2024, 55(6): 809 − 815. DOI: 10.11665/j.issn.1000-5048.2023121001 |
This study aimed to investigate the effects of PmrB△Leu172 on polymyxin B resistance in Pseudomonas aeruginosa. Pseudomonas aeruginosa PmrB△Leu172 strain was constructed by homologous recombination technology, and the minimum inhibitory concentration of polymyxin B against wild type and mutant strains were determined by the broth microdilution technique. The effect of PmrB△Leu172 mutation on gene transcription level was determined by RNA sequencing. Reverse transcription quantitative PCR was used to verify the effect of PmrB△Leu172 mutation on the transcription level of PmrB-regulated genes in P. aeruginosa. The results showed that the minimum inhibitory concentration and minimum bactericidal concentration of mutant strain were 4 and 2 times higher than that of wild-type, respectively, and the transcription level of PmrB-regulated genes was also up-regulated. The results suggested that PmrB△Leu172 mutation of P. aeruginosa can enhance the regulation of PmrA-PmrB two-componentsystem, which leads to the resistance of P. aeruginosa to polymyxin B.
[1] |
Kim BO, Jang HJ, Chung IY, et al. Nitrate respiration promotes polymyxin B resistance in Pseudomonas aeruginosa[J]. Antioxid Redox Signal, 2021, 34(6): 442-451. doi: 10.1089/ars.2019.7924
|
[2] |
Qin SG, Xiao W, Zhou CM, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 199. doi: 10.1038/s41392-022-01056-1
|
[3] |
Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria[J]. Front Microbiol, 2014, 5: 643.
|
[4] |
Cai YY, Lee W, Kwa AL. Polymyxin B versus colistin: an update[J]. Expert Rev Anti Infect Ther, 2015, 13(12): 1481-1497. doi: 10.1586/14787210.2015.1093933
|
[5] |
Liu ZG, Yang X, Che DB, et al. Research progress of polymyxin antibiotics[J]. Northwest Pharm J(西北药学杂志), 2019, 34(5): 701-705.
|
[6] |
Lyu YM, Wang SL, Wang GJ, et al. Research progress on the mechanism and clinical application of polymyxin[J]. Chin J Geriatric Care(中国老年保健医学), 2019, 17(6): 95-97.
|
[7] |
Moskowitz SM, Ernst RK, Miller SI. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A[J]. J Bacteriol, 2004, 186(2): 575-579. doi: 10.1128/JB.186.2.575-579.2004
|
[8] |
Yang BP, Liu C, Pan XL, et al. Identification of novel PhoP-PhoQ regulated genes that contribute to polymyxin B tolerance in Pseudomonas aeruginosa[J]. Microorganisms, 2021, 9(2): 344. doi: 10.3390/microorganisms9020344
|
[9] |
Hasan CM, Pottenger S, Green AE, et al. Pseudomonas aeruginosa utilizes the host-derived polyamine spermidine to facilitate antimicrobial tolerance[J]. JCI Insight, 2022, 7(22): e158879. doi: 10.1172/jci.insight.158879
|
[10] |
Jochumsen N, Marvig RL, Damki RS, et al. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions[J]. Nat Commun, 2016, 7: 13002. doi: 10.1038/ncomms13002
|
[11] |
Bricio-Moreno L, Sheridan VH, Goodhead I, et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa[J]. Nat Commun, 2018, 9(1): 2635. doi: 10.1038/s41467-018-04996-x
|
[12] |
Abraham N, Kwon DH. A single amino acid substitution in PmrB is associated with polymyxin B resistance in clinical isolate of Pseudomonas aeruginosa[J]. FEMS Microbiol Lett, 2009, 298(2): 249-254. doi: 10.1111/j.1574-6968.2009.01720.x
|
[13] |
Barrow K, Kwon DH. Alterations in two-component regulatory systems of phoPQ and pmrAB are associated with polymyxin B resistance in clinical isolates of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2009, 53(12): 5150-5154. doi: 10.1128/AAC.00893-09
|
[14] |
Lee JY, Ko KS. Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates[J]. Diagn Microbiol Infect Dis, 2014, 78(3): 271-276. doi: 10.1016/j.diagmicrobio.2013.11.027
|
[15] |
Ben Jeddou F, Falconnet L, Luscher A, et al. Adaptive and mutational responses to peptide dendrimer antimicrobials in Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2020, 64(4): e02040-e02019.
|
[16] |
Han X, Liu YJ, Ma YB, et al. Peptide dendrimers G3KL and TNS18 inhibit Pseudomonas aeruginosa biofilms[J]. Appl Microbiol Biotechnol, 2019, 103(14): 5821-5830. doi: 10.1007/s00253-019-09801-3
|
[17] |
Hu FP, Guo Y, Zhu DM, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021[J]. Chin J Infect Chemother (中国感染与化疗杂志), 2022, 22(5): 521-530.
|