Citation: | LU Lixue, WANG Yonghui. Progress in discovery of RORγt inverse agonists for the treatment of autoimmune diseases[J]. J China Pharm Univ, 2024, 55(1): 87 − 102. DOI: 10.11665/j.issn.1000-5048.2023121303 |
As a Th17 cell-specific transcription factor, retinoic acid receptor-related orphan receptor γt (RORγt), can induce differentiation of Th17 cells and production of inflammatory factor IL-17, playing an important role in inflammation and autoimmune diseases. RORγt inverse agonists have become a research hotspot in both academia and pharmaceutical companies around the world in recent years, with great development potential. A variety of skeletal structure types have been reported, including orthosteric and allosteric inverse agonists. In this paper, the structure and functions of RORγt are introduced, and RORγt inverse agonists in clinical and preclinical studies are reviewed in order to provide reference for further research and development of RORγt inverse agonists.
[1] |
Li H, Tsokos GC. IL-23/IL-17 axis in inflammatory rheumatic diseases[J]. Clin Rev Allergy Immunol, 2021, 60(1): 31-45. doi: 10.1007/s12016-020-08823-4
|
[2] |
Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: a review[J]. JAMA, 2020, 323(19): 1945-1960. doi: 10.1001/jama.2020.4006
|
[3] |
Blauvelt A. Safety of secukinumab in the treatment of psoriasis[J]. Expert Opin Drug Saf, 2016, 15(10): 1413-1420. doi: 10.1080/14740338.2016.1221923
|
[4] |
Craig S, Warren RB. Ixekizumab for the treatment of psoriasis: up-to-date[J]. Expert Opin Biol Ther, 2020, 20(6): 549-557. doi: 10.1080/14712598.2020.1729736
|
[5] |
Beck KM, Koo J. Brodalumab for the treatment of plaque psoriasis: up-to-date[J]. Expert Opin Biol Ther, 2019, 19(4): 287-292. doi: 10.1080/14712598.2019.1579794
|
[6] |
Reis J, Vender R, Torres T. Bimekizumab: the first dual inhibitor of interleukin (IL)-17A and IL-17F for the treatment of psoriatic disease and ankylosing spondylitis[J]. BioDrugs, 2019, 33(4): 391-399. doi: 10.1007/s40259-019-00361-6
|
[7] |
Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: a structural perspective[J]. Protein Sci, 2018, 27(11): 1876-1892. doi: 10.1002/pro.3496
|
[8] |
Oh SK, Kim D, Kim K, et al. RORα is crucial for attenuated inflammatory response to maintain intestinal homeostasis[J]. Proc Natl Acad Sci U S A, 2019, 116(42): 21140-21149. doi: 10.1073/pnas.1907595116
|
[9] |
Lee IK, Song H, Kim H, et al. RORα regulates cholesterol metabolism of CD8+ T cells for anticancer immunity[J]. Cancers, 2020, 12(7): 1733. doi: 10.3390/cancers12071733
|
[10] |
Choi WS, Lee G, Song WH, et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis[J]. Nature, 2019, 566(7743): 254-258. doi: 10.1038/s41586-019-0920-1
|
[11] |
Byun H, Lee HL, Liu H, et al. Rorβ regulates selective axon-target innervation in the mammalian midbrain[J]. Development, 2019, 146(14): dev171926. doi: 10.1242/dev.171926
|
[12] |
Liu H, Aramaki M, Fu YL, et al. Retinoid-related orphan receptor β and transcriptional control of neuronal differentiation[J]. Curr Top Dev Biol, 2017, 125: 227-255.
|
[13] |
Kumar R, Theiss AL, Venuprasad K. RORγt protein modifications and IL-17-mediated inflammation[J]. Trends Immunol, 2021, 42(11): 1037-1050. doi: 10.1016/j.it.2021.09.005
|
[14] |
Zeng JP, Li MX, Zhao QY, et al. Small molecule inhibitors of RORγt for Th17 regulation in inflammatory and autoimmune diseases[J]. J Pharm Anal, 2023, 13(6): 545-562. doi: 10.1016/j.jpha.2023.05.009
|
[15] |
Sun NN, Xie Q, Dang YJ, et al. Agonist lock touched and untouched retinoic acid receptor-related orphan receptor-γt (RORγt) inverse agonists: classification based on the molecular mechanisms of action[J]. J Med Chem, 2021, 64(15): 10519-10536. doi: 10.1021/acs.jmedchem.0c02178
|
[16] |
Lavery DN, McEwan IJ. Structure and function of steroid receptor AF1 transactivation domains: induction of active conformations[J]. Biochem J, 2005, 391(Pt 3): 449-464.
|
[17] |
Zhang JJ, Chen BY, Zhang C, et al. Modes of action insights from the crystallographic structures of retinoic acid receptor-related orphan receptor-γt (RORγt)[J]. Eur J Med Chem, 2023, 247: 115039. doi: 10.1016/j.ejmech.2022.115039
|
[18] |
Singh AK, Khare P, Obaid A, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2[J]. Nat Commun, 2018, 9(1): 4515. doi: 10.1038/s41467-018-06924-5
|
[19] |
Chen Y, Wang DX, Zhao Y, et al. p300 promotes differentiation of Th17 cells via positive regulation of the nuclear transcription factor RORγt in acute respiratory distress syndrome[J]. Immunol Lett, 2018, 202: 8-15. doi: 10.1016/j.imlet.2018.07.004
|
[20] |
Ciofani M, Madar A, Galan C, et al. A validated regulatory network for Th17 cell specification[J]. Cell, 2012, 151(2): 289-303. doi: 10.1016/j.cell.2012.09.016
|
[21] |
Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases[J]. Semin Immunopathol, 2019, 41(3): 283-297. doi: 10.1007/s00281-019-00733-8
|
[22] |
Stadhouders R, Lubberts E, Hendriks RW. A cellular and molecular view of T helper 17 cell plasticity in autoimmunity[J]. J Autoimmun, 2018, 87: 1-15. doi: 10.1016/j.jaut.2017.12.007
|
[23] |
Kumar N, Solt LA, Conkright JJ, et al. The benzenesulfoamide T0901317[ N -(2, 2, 2-trifluoroethyl)- N -[4-[2, 2, 2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-alpha/gamma inverse agonist[J]. Mol Pharmacol, 2010, 77(2): 228-236. doi: 10.1124/mol.109.060905
|
[24] |
Kumar N, Lyda B, Chang MR, et al. Identification of SR2211: a potent synthetic RORγ-selective modulator[J]. ACS Chem Biol, 2012, 7(4): 672-677. doi: 10.1021/cb200496y
|
[25] |
Solt LA, Kumar N, He YJ, et al. Identification of a selective RORγ ligand that suppresses T(H)17 cells and stimulates T regulatory cells[J]. ACS Chem Biol, 2012, 7(9): 1515-1519. doi: 10.1021/cb3002649
|
[26] |
Gege C. Retinoic acid-related orphan receptor gamma t (RORγt) inverse agonists/antagonists for the treatment of inflammatory diseases - where are we presently [J]? Expert Opin Drug Discov, 2021, 16(12): 1517-1535.
|
[27] |
Pandya VB, Kumar S, Sachchidanand, et al. Combating autoimmune diseases with retinoic acid receptor-related orphan receptor-γ (RORγ or RORc) inhibitors: hits and misses[J]. J Med Chem, 2018, 61(24): 10976-10995. doi: 10.1021/acs.jmedchem.8b00588
|
[28] |
Reisman SA, Lee CY I, Proksch JW, et al. RTA 1701 is an oral RORγt inhibitor that suppresses the IL-17A response in non-human Primates[J]. J Immunol, 2018, 200(1_Supplement): 175.22. doi: 10.4049/jimmunol.200.Supp.175.22
|
[29] |
Wang YH, Cai W, Zhang GF, et al. Discovery of novel N-(5-(arylcarbonyl)thiazol-2-yl)amides and N-(5-(arylcarbonyl)thiophen-2-yl)amides as potent RORγt inhibitors[J]. Bioorg Med Chem, 2014, 22(2): 692-702. doi: 10.1016/j.bmc.2013.12.021
|
[30] |
Wang YH, Yang T, Liu Q, et al. Discovery of N-(4-aryl-5-aryloxy-thiazol-2-yl)-amides as potent RORγt inverse agonists[J]. Bioorg Med Chem, 2015, 23(17): 5293-5302. doi: 10.1016/j.bmc.2015.07.068
|
[31] |
Wang YH, Cai W, Cheng YB, et al. Discovery of biaryl amides as potent, orally bioavailable, and CNS penetrant RORγt inhibitors[J]. ACS Med Chem Lett, 2015, 6(7): 787-792. doi: 10.1021/acsmedchemlett.5b00122
|
[32] |
Xiao S, Yosef N, Yang JF, et al. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms[J]. Immunity, 2014, 40(4): 477-489. doi: 10.1016/j.immuni.2014.04.004
|
[33] |
Sun NN, Huang YF, Yu MC, et al. Discovery of carboxyl-containing biaryl ureas as potent RORγt inverse agonists[J]. Eur J Med Chem, 2020, 202: 112536. doi: 10.1016/j.ejmech.2020.112536
|
[34] |
Takeda pharmaceutical company limited. Preparation of indole and carbazole derivatives as inhibitors of retinoid-related orphan receptor γt (RORγt): WO2013/042782[P]. 2013-03-28.
|
[35] |
Huang YF, Yu MC, Sun NN, et al. Discovery of carbazole carboxamides as novel RORγt inverse agonists[J]. Eur J Med Chem, 2018, 148: 465-476. doi: 10.1016/j.ejmech.2018.02.050
|
[36] |
Yang T, Liu Q, Cheng YB, et al. Discovery of tertiary amine and indole derivatives as potent RORγt inverse agonists[J]. ACS Med Chem Lett, 2013, 5(1): 65-68.
|
[37] |
Wang YH, Cai W, Tang T, et al. From RORγt agonist to two types of RORγt inverse agonists[J]. ACS Med Chem Lett, 2018, 9(2): 120-124. doi: 10.1021/acsmedchemlett.7b00476
|
[38] |
Kummer DA, Cummings MD, Abad M, et al. Identification and structure activity relationships of quinoline tertiary alcohol modulators of RORγt[J]. Bioorg Med Chem Lett, 2017, 27(9): 2047-2057. doi: 10.1016/j.bmcl.2017.02.044
|
[39] |
Barbay JK, Cummings MD, Abad M, et al. 6-Substituted quinolines as RORγt inverse agonists[J]. Bioorg Med Chem Lett, 2017, 27(23): 5277-5283. doi: 10.1016/j.bmcl.2017.10.027
|
[40] |
Tanis VM, Venkatesan H, Cummings MD, et al. 3-Substituted quinolines as RORγt inverse agonists[J]. Bioorg Med Chem Lett, 2019, 29(12): 1463-1470. doi: 10.1016/j.bmcl.2019.04.021
|
[41] |
Fukase Y, Sato A, Tomata Y, et al. Identification of novel quinazolinedione derivatives as RORγt inverse agonist[J]. Bioorg Med Chem, 2018, 26(3): 721-736. doi: 10.1016/j.bmc.2017.12.039
|
[42] |
Sato A, Fukase Y, Kono M, et al. Design and synthesis of conformationally constrained RORγt inverse agonists[J]. ChemMedChem, 2019, 14(22): 1917-1932. doi: 10.1002/cmdc.201900416
|
[43] |
Kono M, Oda T, Tawada M, et al. Discovery of orally efficacious RORγt inverse agonists. Part 2: design, synthesis, and biological evaluation of novel tetrahydroisoquinoline derivatives[J]. Bioorg Med Chem, 2018, 26(2): 470-482. doi: 10.1016/j.bmc.2017.12.008
|
[44] |
Kono M, Ochida A, Oda T, et al. Discovery of[ cis -3-({(5 R )-5-[(7-fluoro-1, 1-dimethyl-2, 3-dihydro-1 H -inden-5-yl)carbamoyl]-2-methoxy-7, 8-dihydro-1, 6-naphthyridin-6(5 H)-yl}carbonyl)cyclobutyl]acetic acid (TAK-828F) as a potent, selective, and orally available novel retinoic acid receptor-related orphan receptor γt inverse agonist[J]. J Med Chem, 2018, 61(7): 2973-2988. doi: 10.1021/acs.jmedchem.8b00061
|
[45] |
Xia YH, Yu MC, Zhao YP, et al. Discovery of tetrahydroquinolines and benzomorpholines as novel potent RORγt agonists[J]. Eur J Med Chem, 2021, 211: 113013. doi: 10.1016/j.ejmech.2020.113013
|
[46] |
Sun NN, Ma XJ, Zhou KF, et al. Discovery of novel N-sulfonamide-tetrahydroquinolines as potent retinoic acid receptor-related orphan receptor γt inverse agonists for the treatment of autoimmune diseases[J]. Eur J Med Chem, 2020, 187: 111984. doi: 10.1016/j.ejmech.2019.111984
|
[47] |
Duan JJW, Lu ZH, Jiang B, et al. Structure-based discovery of phenyl (3-phenylpyrrolidin-3-yl)sulfones as selective, orally active RORγt inverse agonists[J]. ACS Med Chem Lett, 2019, 10(3): 367-373. doi: 10.1021/acsmedchemlett.9b00010
|
[48] |
Marcoux D, Duan JJW, Shi Q, et al. Rationally designed, conformationally constrained inverse agonists of RORγt-identification of a potent, selective series with biologic-like in vivo efficacy[J]. J Med Chem, 2019, 62(21): 9931-9946. doi: 10.1021/acs.jmedchem.9b01369
|
[49] |
Marcoux D, Bertrand MB, Weigelt CA, et al. Annulation reaction enables the identification of an exocyclic amide tricyclic chemotype as retinoic acid receptor-related orphan receptor gamma (RORγ/RORc) inverse agonists[J]. Bioorg Med Chem Lett, 2020, 30(19): 127466. doi: 10.1016/j.bmcl.2020.127466
|
[50] |
Cherney RJ, Cornelius LAM, Srivastava A, et al. Discovery of BMS-986251: a clinically viable, potent, and selective RORγt inverse agonist[J]. ACS Med Chem Lett, 2020, 11(6): 1221-1227. doi: 10.1021/acsmedchemlett.0c00063
|
[51] |
Liu QJ, Batt DG, Weigelt CA, et al. Novel tricyclic pyroglutamide derivatives as potent RORγt inverse agonists identified using a virtual screening approach[J]. ACS Med Chem Lett, 2020, 11(12): 2510-2518. doi: 10.1021/acsmedchemlett.0c00496
|
[52] |
Yang MG, Beaudoin-Bertrand M, Xiao ZL, et al. Tricyclic-carbocyclic RORγt inverse agonists-discovery of BMS-986313[J]. J Med Chem, 2021, 64(5): 2714-2724. doi: 10.1021/acs.jmedchem.0c01992
|
[53] |
Fauber BP, René O, Burton B, et al. Identification of tertiary sulfonamides as RORc inverse agonists[J]. Bioorg Med Chem Lett, 2014, 24(9): 2182-2187. doi: 10.1016/j.bmcl.2014.03.038
|
[54] |
van Niel MB, Fauber BP, Cartwright M, et al. A reversed sulfonamide series of selective RORc inverse agonists[J]. Bioorg Med Chem Lett, 2014, 24(24): 5769-5776. doi: 10.1016/j.bmcl.2014.10.037
|
[55] |
Fauber BP, René O, de Leon Boenig G, et al. Reduction in lipophilicity improved the solubility, plasma-protein binding, and permeability of tertiary sulfonamide RORc inverse agonists[J]. Bioorg Med Chem Lett, 2014, 24(16): 3891-3897. doi: 10.1016/j.bmcl.2014.06.048
|
[56] |
Fauber BP, René O, Deng YZ, et al. Discovery of 1-{4-[3-fluoro-4-((3 S , 6 R )-3-methyl-1, 1-dioxo-6-phenyl-[1, 2]thiazinan-2-ylmethyl)-phenyl]-piperazin-1-yl}-ethanone (GNE-3500): a potent, selective, and orally bioavailable retinoic acid receptor-related orphan receptor C (RORc or RORγ) inverse agonist[J]. J Med Chem, 2015, 58(13): 5308-5322. doi: 10.1021/acs.jmedchem.5b00597
|
[57] |
Lu ZH, Duan JJW, Xiao HY, et al. Identification of potent, selective and orally bioavailable phenyl (( R)-3-phenylpyrrolidin-3-yl)sulfone analogues as RORγt inverse agonists[J]. Bioorg Med Chem Lett, 2019, 29(16): 2265-2269. doi: 10.1016/j.bmcl.2019.06.036
|
[58] |
Jiang B, Duan JJW, Stachura S, et al. Discovery of (3 S, 4 S)-3-methyl-3-(4-fluorophenyl)-4-(4-(1, 1, 1, 3, 3, 3-hexafluoro-2-hydroxyprop-2-yl)phenyl)pyrrolidines as novel RORγt inverse agonists[J]. Bioorg Med Chem Lett, 2020, 30(17): 127392. doi: 10.1016/j.bmcl.2020.127392
|
[59] |
Gege C, Albers M, Kinzel O, et al. Optimization and biological evaluation of thiazole-bis-amide inverse agonists of RORγt[J]. Bioorg Med Chem Lett, 2020, 30(12): 127205. doi: 10.1016/j.bmcl.2020.127205
|
[60] |
Tian JL, Sun NN, Yu MC, et al. Discovery of N-indanyl benzamides as potent RORγt inverse agonists[J]. Eur J Med Chem, 2019, 167: 37-48. doi: 10.1016/j.ejmech.2019.01.082
|
[61] |
Lu LX, Chen S, Yu MC, et al. Discovery of novel triazine derivatives as potent retinoic acid receptor-related orphan receptor γt (RORγt) inverse agonists[J]. Eur J Med Chem, 2023, 256: 115424. doi: 10.1016/j.ejmech.2023.115424
|
[62] |
Scheepstra M, Leysen S, van Almen GC, et al. Identification of an allosteric binding site for RORγt inhibition[J]. Nat Commun, 2015, 6: 8833. doi: 10.1038/ncomms9833
|
[63] |
Lu LX, Sun NN, Wang YH. Development and therapeutic potential of allosteric retinoic acid receptor-related orphan receptor γt (RORγt) inverse agonists for autoimmune diseases[J]. Eur J Med Chem, 2023, 258: 115574. doi: 10.1016/j.ejmech.2023.115574
|
[64] |
Fauber BP, Gobbi A, Robarge K, et al. Discovery of imidazo[1, 5-a]pyridines and-pyrimidines as potent and selective RORc inverse agonists[J]. Bioorg Med Chem Lett, 2015, 25(15): 2907-2912. doi: 10.1016/j.bmcl.2015.05.055
|
[65] |
de Vries RMJM, Doveston RG, Meijer FA, et al. Elucidation of an allosteric mode of action for a thienopyrazole RORγt inverse agonist[J]. ChemMedChem, 2020, 15(7): 561-565. doi: 10.1002/cmdc.202000044
|
[66] |
Ouvry G, Bouix-Peter C, Ciesielski F, et al. Discovery of phenoxyindazoles and phenylthioindazoles as RORγ inverse agonists[J]. Bioorg Med Chem Lett, 2016, 26(23): 5802-5808. doi: 10.1016/j.bmcl.2016.10.023
|
[67] |
Shaikh NS, Iyer JP, Munot YS, et al. Discovery and pharmacological evaluation of indole derivatives as potent and selective RORγt inverse agonist for multiple autoimmune conditions[J]. Bioorg Med Chem Lett, 2019, 29(16): 2208-2217. doi: 10.1016/j.bmcl.2019.06.044
|
[68] |
Zhang HJ, Lapointe BT, Anthony N, et al. Discovery of N-(indazol-3-yl)piperidine-4-carboxylic acids as RORγt allosteric inhibitors for autoimmune diseases[J]. ACS Med Chem Lett, 2020, 11(2): 114-119. doi: 10.1021/acsmedchemlett.9b00431
|
[69] |
Meijer FA, Doveston RG, de Vries RMJM, et al. Ligand-based design of allosteric retinoic acid receptor-related orphan receptor γt (RORγt) inverse agonists[J]. J Med Chem, 2020, 63(1): 241-259. doi: 10.1021/acs.jmedchem.9b01372
|
[70] |
Meijer FA, Saris AOWM, Doveston RG, et al. Structure-activity relationship studies of trisubstituted isoxazoles as selective allosteric ligands for the retinoic-acid-receptor-related orphan receptor γt[J]. J Med Chem, 2021, 64(13): 9238-9258. doi: 10.1021/acs.jmedchem.1c00475
|
[71] |
Jiang X, Dulubova I, Reisman SA, et al. A novel series of cysteine-dependent, allosteric inverse agonists of the nuclear receptor RORγt[J]. Bioorg Med Chem Lett, 2020, 30(6): 126967. doi: 10.1016/j.bmcl.2020.126967
|
[1] | TANG Linfang, ZHANG Ziqiang, SU Rina, HE Shuwang, YAO Jing. Advances in taste-masking technology of oral paediatric medicine[J]. Journal of China Pharmaceutical University, 2017, 48(2): 135-141. DOI: 10.11665/j.issn.1000-5048.20170202 |
[2] | DENG Yan-ping, XIAO Yan-yu, PING Qi-neng, GU Xiao-zhen, BAO Quan-ying. Combined system of sinomenine hydrochloride sustained-release pellets[J]. Journal of China Pharmaceutical University, 2009, 40(3): 222-226. |
[3] | Preparation of Turbutaline Sulphate Pulsatile Controlled-release Pellets[J]. Journal of China Pharmaceutical University, 2004, (4): 17-20. |
[4] | Studies on Famotidine Pulsatile Controlled-Release Capsules[J]. Journal of China Pharmaceutical University, 1997, (3): 25-29. |
[6] | Study on the Controlled-Release System of Propranolol Hydrochloride[J]. Journal of China Pharmaceutical University, 1994, (2): 83-87. |
[7] | Studies on Isosorbide- 5- Mononitrate Controlled Release Tablets[J]. Journal of China Pharmaceutical University, 1993, (6): 327-330. |
[8] | Studies on Controlled Release Tablet of Piroxicam[J]. Journal of China Pharmaceutical University, 1990, (4): 201-204. |
[9] | DEVELOPMENT OF CONTROLLED-RELEASE CHLORPHENIRAMINE PELLETS[J]. Journal of China Pharmaceutical University, 1985, (1): 28-37. |
[10] | Li Hanyun, Li Fengwen, Liu Guojie, Chen Shuguang, Cheng Yun. PREDICTION OF SHELF-LIFE OF CONTROLLED- RELEASE OPHTHALMIC FILM OF PILOCARPINE[J]. Journal of China Pharmaceutical University, 1984, (3): 1-5. |
1. |
杨婧雯,陈芊,单云龙,刘嘉莉,尉宁,王婧,王广基,周芳. 间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展. 中国药科大学学报. 2024(01): 103-114 .
![]() | |
2. |
张强,罗曦,韩丽颖,王帅,包永睿,李天娇,孟宪生. 基于代谢组学研究hUC-MSCs-Exos联合复方木鸡颗粒抑制人肝癌细胞SMMC-7721增殖机制. 中华中医药杂志. 2024(10): 5481-5487 .
![]() |