• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
MA Lei, YANG Zhaoqing, WANG Youchun. Progress and prospect of global vaccine research and development[J]. J China Pharm Univ, 2024, 55(1): 115 − 126. DOI: 10.11665/j.issn.1000-5048.2023121601
Citation: MA Lei, YANG Zhaoqing, WANG Youchun. Progress and prospect of global vaccine research and development[J]. J China Pharm Univ, 2024, 55(1): 115 − 126. DOI: 10.11665/j.issn.1000-5048.2023121601

Progress and prospect of global vaccine research and development

Funds: This study was supported by the Medical and Health Science and Technology Innovation Project of Chinese Academy of Medical Sciences (2022-I2M-3-001)
More Information
  • Received Date: December 15, 2023
  • Available Online: March 05, 2024
  • The emerging infectious diseases have become an important risk factor affecting human public health. Vaccination remains the most critical approach to the prevention and control of such diseases. Since the outbreak of the COVID-19 epidemic, lots of transformational basic innovative vaccine technologies and strategies have been developed. The third-generation vaccine technology represented by mRNA vaccine has gradually become a new approach to the research and development of vaccines. This paper introduces the characteristics of different vaccine technologies in recent years, and summarizes the latest research progress in current vaccine products based on different platforms, so as to provide experience and reference for future research and development of vaccines.

  • [1]
    Yue JY, Liu YH, Zhao ML, et al. The R&D landscape for infectious disease vaccines[J]. Nat Rev Drug Discov, 2023, 22(11): 867-868. doi: 10.1038/d41573-023-00119-4
    [2]
    Jearanaiwitayakul T, Sunintaboon P, Chawengkittikul R, et al. Whole inactivated dengue virus-loaded trimethyl chitosan nanoparticle-based vaccine: immunogenic properties in ex vivo and in vivo models[J]. Hum Vaccin Immunother, 2021, 17(8): 2793-2807. doi: 10.1080/21645515.2021.1884473
    [3]
    Puente-Massaguer E, Grau-Garcia P, Strobl F, et al. Accelerating HIV-1 VLP production using stable high five insect cell pools[J]. Biotechnol J, 2021, 16(4): e2000391. doi: 10.1002/biot.202000391
    [4]
    Gränicher G, Coronel J, Pralow A, et al. Efficient influenza A virus production in high cell density using the novel porcine suspension cell line PBG. PK2.1[J]. Vaccine, 2019, 37(47): 7019-7028. doi: 10.1016/j.vaccine.2019.04.030
    [5]
    Lin HX, Ma Z, Chen L, et al. Recombinant swinepox virus expressing glycoprotein E2 of classical swine fever virus confers complete protection in pigs upon viral challenge[J]. Front Vet Sci, 2017, 4: 81. doi: 10.3389/fvets.2017.00081
    [6]
    Ma T, Ouyang T, Ouyang HS, et al. Porcine circovirus 2 proliferation can be enhanced by stably expressing porcine IL-2 gene in PK-15 cell[J]. Virus Res, 2017, 227: 143-149. doi: 10.1016/j.virusres.2016.10.006
    [7]
    McCormick K, Jiang ZY, Zhu LC, et al. Construction and immunogenicity evaluation of recombinant influenza A viruses containing chimeric hemagglutinin genes derived from genetically divergent influenza A H1N1 subtype viruses[J]. PLoS One, 2015, 10(6): e0127649. doi: 10.1371/journal.pone.0127649
    [8]
    Carignan D, Thérien A, Rioux G, et al. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine[J]. Vaccine, 2015, 33(51): 7245-7253. doi: 10.1016/j.vaccine.2015.10.123
    [9]
    Blomqvist S, Bruu AL, Stenvik M, et al. Characterization of a recombinant type 3/type 2 poliovirus isolated from a healthy vaccinee and containing a chimeric capsid protein VP1[J]. J Gen Virol, 2003, 84(Pt 3): 573-580.
    [10]
    Furesz J, Scheifele DW, Palkonyay L. Safety and effectiveness of the new inactivated hepatitis A virus vaccine[J]. CMAJ, 1995, 152(3): 343-348.
    [11]
    Pumchan A, Sae-Ueng U, Prasittichai C, et al. A novel efficient piscine oral nano-vaccine delivery system: modified halloysite nanotubes (HNTs) preventing streptococcosis disease in Tilapia ( Oreochromis sp. )[J]. Vaccines, 2022, 10(8): 1180. doi: 10.3390/vaccines10081180
    [12]
    He CY, Yang JH, Zhao HL, et al. Vaccination with a Brucella ghost developed through a double inactivation strategy provides protection in guinea pigs and cattle[J]. Microb Pathog, 2022, 162: 105363. doi: 10.1016/j.micpath.2021.105363
    [13]
    Sano K, Ainai A, Suzuki T, et al. Intranasal inactivated influenza vaccines for the prevention of seasonal influenza epidemics[J]. Expert Rev Vaccines, 2018, 17(8): 687-696. doi: 10.1080/14760584.2018.1507743
    [14]
    Minor PD. Live attenuated vaccines: historical successes and current challenges[J]. Virology, 2015, 479/480: 379-392. doi: 10.1016/j.virol.2015.03.032
    [15]
    Sanders BP, de Los Rios Oakes I, van Hoek V, et al. Cold-adapted viral attenuation ( CAVA): highly temperature sensitive polioviruses as novel vaccine strains for a next generation inactivated poliovirus vaccine[J]. PLoS Pathog, 2016, 12(3): e1005483. doi: 10.1371/journal.ppat.1005483
    [16]
    Ishida H, Murakami S, Kamiki H, et al. Generation of a recombinant temperature-sensitive influenza D virus[J]. Sci Rep, 2023, 13(1): 3806. doi: 10.1038/s41598-023-30942-z
    [17]
    Yeh MT, Bujaki E, Dolan PT, et al. Engineering the live-attenuated polio vaccine to prevent reversion to virulence[J]. Cell Host Microbe, 2020, 27(5): 736-751. e8.
    [18]
    Chen J, Wang JY, Zhu HY, et al. Generation of a live attenuated influenza A vaccine using chemical-triggered intein[J]. ACS Synth Biol, 2023, 12(6): 1686-1695. doi: 10.1021/acssynbio.3c00020
    [19]
    Romano MR, Berti F, Rappuoli R. Classical- and bioconjugate vaccines: comparison of the structural properties and immunological response[J]. Curr Opin Immunol, 2022, 78: 102235. doi: 10.1016/j.coi.2022.102235
    [20]
    Haggenburg S, Garcia Garrido HM, Kant IMJ, et al. Immunogenicity of the 13-valent pneumococcal conjugated vaccine followed by the 23-valent polysaccharide vaccine in chronic lymphocytic leukemia[J]. Vaccines, 2023, 11(7): 1201. doi: 10.3390/vaccines11071201
    [21]
    Hatz CFR, Bally B, Rohrer S, et al. Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella dysenteriae type 1 administered to healthy adults: a single blind, partially randomized phase I study[J]. Vaccine, 2015, 33(36): 4594-4601. doi: 10.1016/j.vaccine.2015.06.102
    [22]
    Su HL, Liu Q, Bian XP, et al. Synthesis and delivery of Streptococcus pneumoniae capsular polysaccharides by recombinant attenuated Salmonella vaccines[J]. Proc Natl Acad Sci U S A, 2021, 118(2): e2013350118. doi: 10.1073/pnas.2013350118
    [23]
    McCrudden CM, Bennie L, Chambers P, et al. Peptide delivery of a multivalent mRNA SARS-CoV-2 vaccine[J]. J Control Release, 2023, 362: 536-547. doi: 10.1016/j.jconrel.2023.08.053
    [24]
    Shaw CA, August A, Bart S, et al. A phase 1, randomized, placebo-controlled, dose-ranging study to evaluate the safety and immunogenicity of an mRNA-based chikungunya virus vaccine in healthy adults[J]. Vaccine, 2023, 41(26): 3898-3906. doi: 10.1016/j.vaccine.2023.04.064
    [25]
    Scoccianti S, Paoli CD, Infantino M, et al. Immunogenicity after two and three doses of mRNA vaccine in patients with cancer treated with exclusive radiotherapy[J]. Int Immunopharmacol, 2023, 122: 110460. doi: 10.1016/j.intimp.2023.110460
    [26]
    Muramatsu H, Lam K, Bajusz C, et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine[J]. Mol Ther, 2022, 30(5): 1941-1951. doi: 10.1016/j.ymthe.2022.02.001
    [27]
    Thomas SJ, Moreira ED Jr, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine through 6 months[J]. N Engl J Med, 2021, 385(19): 1761-1773. doi: 10.1056/NEJMoa2110345
    [28]
    Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine[J]. N Engl J Med, 2021, 384(5): 403-416. doi: 10.1056/NEJMoa2035389
    [29]
    Munro APS, Feng S, Janani L, et al. Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial[J]. Lancet Infect Dis, 2022, 22(8): 1131-1141. doi: 10.1016/S1473-3099(22)00271-7
    [30]
    Momin T, Kansagra K, Patel H, et al. Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India[J]. EClinicalMedicine, 2021, 38: 101020. doi: 10.1016/j.eclinm.2021.101020
    [31]
    Khobragade A, Bhate S, Ramaiah V, et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India[J]. Lancet, 2022, 399(10332): 1313-1321. doi: 10.1016/S0140-6736(22)00151-9
    [32]
    Tebas P, Yang SP, Boyer JD, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of an open-label, Phase 1 clinical trial[J]. EClinicalMedicine, 2021, 31: 100689. doi: 10.1016/j.eclinm.2020.100689
    [33]
    Nakagami H, Matsumoto T, Takazawa K, et al. Long term follow-up study of a randomized, open-label, uncontrolled, phase I/II study to assess the safety and immunogenicity of intramuscular and intradermal doses of COVID-19 DNA vaccine (AG0302-COVID19)[J]. Vaccines, 2023, 11(10): 1535. doi: 10.3390/vaccines11101535
    [34]
    Ahn JY, Lee J, Suh YS, et al. Safety and immunogenicity of two recombinant DNA COVID-19 vaccines containing the coding regions of the spike or spike and nucleocapsid proteins: an interim analysis of two open-label, non-randomised, phase 1 trials in healthy adults[J]. Lancet Microbe, 2022, 3(3): e173-e183. doi: 10.1016/S2666-5247(21)00358-X
    [35]
    Kraynyak KA, Blackwood E, Agnes J, et al. SARS-CoV-2 DNA vaccine INO-4800 induces durable immune responses capable of being boosted in a phase 1 open-label trial[J]. J Infect Dis, 2022, 225(11): 1923-1932. doi: 10.1093/infdis/jiac016
    [36]
    Jiang S, Wu ST, Zhao G, et al. Comparison of wild type DNA sequence of spike protein from SARS-CoV-2 with optimized sequence on the induction of protective responses against SARS-cov-2 challenge in mouse model[J]. Hum Vaccin Immunother, 2022, 18(1): 2016201. doi: 10.1080/21645515.2021.2016201
    [37]
    Dunkle LM, Kotloff KL, Gay CL, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico[J]. N Engl J Med, 2022, 386(6): 531-543. doi: 10.1056/NEJMoa2116185
    [38]
    Alves K, Plested JS, Galbiati S, et al. Immunogenicity and safety of a fourth homologous dose of NVX-CoV2373[J]. Vaccine, 2023, 41(29): 4280-4286. doi: 10.1016/j.vaccine.2023.05.051
    [39]
    Wang S, Liang B, Wang WQ, et al. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases[J]. Signal Transduct Target Ther, 2023, 8(1): 149. doi: 10.1038/s41392-023-01408-5
    [40]
    Chen JY, Wang P, Yuan LZ, et al. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2[J]. Sci Bull, 2022, 67(13): 1372-1387. doi: 10.1016/j.scib.2022.05.018
    [41]
    Wang Q, Yang CC, Yin L, et al. Intranasal booster using an Omicron vaccine confers broad mucosal and systemic immunity against SARS-CoV-2 variants[J]. Signal Transduct Target Ther, 2023, 8(1): 167. doi: 10.1038/s41392-023-01423-6
    [42]
    Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine[J]. N Engl J Med, 2020, 383(24): 2320-2332. doi: 10.1056/NEJMoa2026920
    [43]
    Kheirvari M, Liu H, Tumban E. Virus-like particle vaccines and platforms for vaccine development[J]. Viruses, 2023, 15(5): 1109. doi: 10.3390/v15051109
    [44]
    World Health Organization. The COVID-19 vaccine tracker and landscape compiles detailed information of each COVID-19 vaccine candidate in development by closely monitoring their progress through the pipeline[EB/OL]. (2023-03-30).https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
    [45]
    Wang R, Huang X, Cao TS, et al. Development of a thermostable SARS-CoV-2 variant-based bivalent protein vaccine with cross-neutralizing potency against Omicron subvariants[J]. Virology, 2022, 576: 61-68. doi: 10.1016/j.virol.2022.09.003
    [46]
    Yadav T, Srivastava N, Mishra G, et al. Recombinant vaccines for COVID-19[J]. Hum Vaccin Immunother, 2020, 16(12): 2905-2912. doi: 10.1080/21645515.2020.1820808
    [47]
    Deng SF, Liu Y, Tam RC, et al. An intranasal influenza virus-vectored vaccine prevents SARS-CoV-2 replication in respiratory tissues of mice and hamsters[J]. Nat Commun, 2023, 14(1): 2081. doi: 10.1038/s41467-023-37697-1
    [48]
    University of Minnesota. Universal influenza vaccine technology landscape[EB/OL]. (2023-11-29).https://ivr.cidrap.umn.edu/universal-influenza-vaccine-technology-landscape.
    [49]
    Lee IT, Nachbagauer R, Ensz D, et al. Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis[J]. Nat Commun, 2023, 14(1): 3631. doi: 10.1038/s41467-023-39376-7
    [50]
    Arevalo CP, Bolton MJ, Le Sage V, et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes[J]. Science, 2022, 378(6622): 899-904. doi: 10.1126/science.abm0271
    [51]
    Shinde V, Cho I, Plested JS, et al. Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial[J]. Lancet Infect Dis, 2022, 22(1): 73-84. doi: 10.1016/S1473-3099(21)00192-4
    [52]
    Ward BJ, Séguin A, Couillard J, et al. Phase III: Randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18-49 years of age[J]. Vaccine, 2021, 39(10): 1528-1533. doi: 10.1016/j.vaccine.2021.01.004
    [53]
    Haynes BF, Wiehe K, Borrow P, et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies[J]. Nat Rev Immunol, 2023, 23(3): 142-158. doi: 10.1038/s41577-022-00753-w
    [54]
    Mdluli T, Jian NB, Slike B, et al. RV144 HIV-1 vaccination impacts post-infection antibody responses[J]. PLoS Pathog, 2020, 16(12): e1009101. doi: 10.1371/journal.ppat.1009101
    [55]
    Tolley EE, Li SE, Zangeneh SZ, et al. Acceptability of a long-acting injectable HIV prevention product among US and African women: findings from a phase 2 clinical Trial (HPTN 076)[J]. J Int AIDS Soc, 2019, 22(10): e25408. doi: 10.1002/jia2.25408
    [56]
    Bedi R, Bayless NL, Glanville J. Challenges and progress in designing broad-spectrum vaccines against rapidly mutating viruses[J]. Annu Rev Biomed Data Sci, 2023, 6: 419-441. doi: 10.1146/annurev-biodatasci-020722-041304
    [57]
    Leggat DJ, Cohen KW, Willis JR, et al. Vaccination induces HIV broadly neutralizing antibody precursors in humans[J]. Science, 2022, 378(6623): eadd6502. doi: 10.1126/science.add6502
    [58]
    Sanders RW, Derking R, Cupo A, et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP. 664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies[J]. PLoS Pathog, 2013, 9(9): e1003618. doi: 10.1371/journal.ppat.1003618
    [59]
    McManus H, Grulich AE, Amin J, et al. Comparison of trends in rates of sexually transmitted infections before vs after initiation of HIV preexposure prophylaxis among men who have sex with men[J]. JAMA Netw Open, 2020, 3(12): e2030806. doi: 10.1001/jamanetworkopen.2020.30806
    [60]
    Clinical Trials. Moderna set to start human trials of experimental mRNA HIV vaccine[EB/OL]. (2021-08-18).https://www.clinicaltrialsarena.com/news/moderna-hiv-vaccine/.
    [61]
    Moncunill G, Carnes J, Young WC, et al. Transcriptional correlates of malaria in RTS, S/AS01-vaccinated African children: a matched case-control study[J]. Elife, 2022, 11: e70393. doi: 10.7554/eLife.70393
    [62]
    Datoo MS, Natama HM, Somé A, et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years' follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial[J]. Lancet Infect Dis, 2022, 22(12): 1728-1736. doi: 10.1016/S1473-3099(22)00442-X
    [63]
    World Health Organization. WHO recommends R21/Matrix-M vaccine for malaria prevention in updated advice on immunization[EB/OL]. (2023-10-02).https://www.who.int/zh/news/item/02-10-2023-who-recommends-r21-matrix-m-vaccine-for-malaria-prevention-in-updated-advice-on-immunization?ssp=1&setlang=en-US&safesearch=moderate.
    [64]
    World Health Organization. Malaria[EB/OL]. (2023-12-04).https://www.who.int/zh/news-room/fact-sheets/detail/malaria?ssp=1&setlang=en-US&safesearch=moderate.
    [65]
    Hayashi CTH, Cao Y, Clark LC, et al. mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of Plasmodium falciparum[J]. NPJ Vaccines, 2022, 7(1): 155. doi: 10.1038/s41541-022-00577-8
    [66]
    Chuang YM, Alameh MG, Abouneameh S, et al. A mosquito AgTRIO mRNA vaccine contributes to immunity against malaria[J]. NPJ Vaccines, 2023, 8: 88. doi: 10.1038/s41541-023-00679-x
    [67]
    Shirley M. 20-valent pneumococcal conjugate vaccine: pediatric first approval[J]. Paediatr Drugs, 2023, 25(5): 613-619. doi: 10.1007/s40272-023-00584-9
    [68]
    Fairman J, Agarwal P, Barbanel S, et al. Non-clinical immunological comparison of a Next-Generation 24-valent pneumococcal conjugate vaccine (VAX-24) using site-specific carrier protein conjugation to the current standard of care (PCV13 and PPV23)[J]. Vaccine, 2021, 39(23): 3197-3206. doi: 10.1016/j.vaccine.2021.03.070
    [69]
    McGuinness D, Kaufhold RM, McHugh PM, et al. Immunogenicity of PCV24, an expanded pneumococcal conjugate vaccine, in adult monkeys and protection in mice[J]. Vaccine, 2021, 39(30): 4231-4237. doi: 10.1016/j.vaccine.2021.04.067
    [70]
    Wassil J, Sisti M, Fairman J, et al. Evaluating the safety, tolerability, and immunogenicity of a 24-valent pneumococcal conjugate vaccine (VAX-24) in healthy adults aged 18 to 64 years: a phase 1/2, double-masked, dose-finding, active-controlled, randomised clinical trial[J]. Lancet Infect Dis, 2023, S1473-S3099(23): 00572-8.
    [71]
    Araujo AP, Colichio GBC, Oliveira MLS, et al. Serum levels of anti-PspA and anti-PspC IgG decrease with age and do not correlate with susceptibility to experimental human pneumococcal colonization[J]. PLoS One, 2021, 16(2): e0247056. doi: 10.1371/journal.pone.0247056
    [72]
    Mazumder L, Shahab M, Islam S, et al. An immunoinformatics approach to epitope-based vaccine design against PspA in Streptococcus pneumoniae[J]. J Genet Eng Biotechnol, 2023, 21(1): 57. doi: 10.1186/s43141-023-00506-9
    [73]
    Devarakonda Y, Reddy MVNJ, Neethu RS, et al. Multi epitope vaccine candidate design against Streptococcus pneumonia[J]. J Biomol Struct Dyn, 2023, 41(22): 12654-12667.
    [74]
    Nakahashi-Ouchida R, Uchida Y, Yuki Y, et al. A nanogel-based trivalent PspA nasal vaccine protects macaques from intratracheal challenge with pneumococci[J]. Vaccine, 2021, 39(25): 3353-3364. doi: 10.1016/j.vaccine.2021.04.069
    [75]
    Walsh EE, Pérez Marc G, Zareba AM, et al. Efficacy and safety of a bivalent RSV prefusion F vaccine in older adults[J]. N Engl J Med, 2023, 388(16): 1465-1477. doi: 10.1056/NEJMoa2213836
    [76]
    Buonsenso D. Bivalent prefusion F vaccine in pregnancy to prevent RSV illness in infants[J]. N Engl J Med, 2023, 389(11): 1053.
    [77]
    Papi A, Ison MG, Langley JM, et al. Respiratory syncytial virus prefusion F protein vaccine in older adults[J]. N Engl J Med, 2023, 388(7): 595-608. doi: 10.1056/NEJMoa2209604
    [78]
    Topalidou X, Kalergis AM, Papazisis G. Respiratory syncytial virus vaccines: a review of the candidates and the approved vaccines[J]. Pathogens, 2023, 12(10): 1259. doi: 10.3390/pathogens12101259
    [79]
    Luongo C, Winter CC, Collins PL, et al. Respiratory syncytial virus modified by deletions of the NS2 gene and amino acid S1313 of the L polymerase protein is a temperature-sensitive, live-attenuated vaccine candidate that is phenotypically stable at physiological temperature[J]. J Virol, 2013, 87(4): 1985-1996. doi: 10.1128/JVI.02769-12
    [80]
    Schickli JH, Kaur J, Tang RS. Nonclinical phenotypic and genotypic analyses of a Phase 1 pediatric respiratory syncytial virus vaccine candidate MEDI-559 (rA2cp248/404/1030ΔSH) at permissive and non-permissive temperatures[J]. Virus Res, 2012, 169(1): 38-47. doi: 10.1016/j.virusres.2012.06.027
    [81]
    Malkin E, Yogev R, Abughali N, et al. Safety and immunogenicity of a live attenuated RSV vaccine in healthy RSV-seronegative children 5 to 24 months of age[J]. PLoS One, 2013, 8(10): e77104. doi: 10.1371/journal.pone.0077104
    [82]
    Cunningham CK, Karron RA, Muresan P, et al. Evaluation of recombinant live-attenuated respiratory syncytial virus (RSV) vaccines RSV/ΔNS2/Δ1313/I1314L and RSV/276 in RSV-seronegative children[J]. J Infect Dis, 2022, 226(12): 2069-2078. doi: 10.1093/infdis/jiac253
    [83]
    Qiu XR, Xu SY, Lu Y, et al. Development of mRNA vaccines against respiratory syncytial virus (RSV)[J]. Cytokine Growth Factor Rev, 2022, 68: 37-53. doi: 10.1016/j.cytogfr.2022.10.001
    [84]
    Jordan E, Lawrence SJ, Meyer TPH, et al. Broad antibody and cellular immune response from a phase 2 clinical trial with a novel multivalent poxvirus-based respiratory syncytial virus vaccine[J]. J Infect Dis, 2021, 223(6): 1062-1072. doi: 10.1093/infdis/jiaa460
    [85]
    Jordan E, Kabir G, Schultz S, et al. Reduced respiratory syncytial virus load, symptoms, and infections: a human challenge trial of MVA-BN-RSV vaccine[J]. J Infect Dis, 2023, 228(8): 999-1011. doi: 10.1093/infdis/jiad108
    [86]
    Han CR, Huang WQ, Ye M, et al. HPV prevalence and genotype distribution in 2, 306 patients with cervical squamous cell carcinoma in central and Eastern China[J]. Front Public Health, 2023, 11: 1225652. doi: 10.3389/fpubh.2023.1225652
    [87]
    Trimble CL, Morrow MP, Kraynyak KA, et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial[J]. Lancet, 2015, 386(10008): 2078-2088. doi: 10.1016/S0140-6736(15)00239-1
    [88]
    Aggarwal C, Saba NF, Algazi A, et al. Safety and efficacy of MEDI0457 plus durvalumab in patients with human papillomavirus-associated recurrent/metastatic head and neck squamous cell carcinoma[J]. Clin Cancer Res, 2023, 29(3): 560-570. doi: 10.1158/1078-0432.CCR-22-1987
    [89]
    Zhou K, Yuzhakov O, Behloul N, et al. HPV16 E6/E7-based mRNA vaccine is therapeutic in mice bearing aggressive HPV-positive lesions[J]. Front Immunol, 2023, 14: 1213285. doi: 10.3389/fimmu.2023.1213285
    [90]
    Isidro J, Borges V, Pinto M, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus[J]. Nat Med, 2022, 28(8): 1569-1572. doi: 10.1038/s41591-022-01907-y
    [91]
    World Health Organization. Mpox Vaccine Tracker: List of vaccine candidates in research & development[EB/OL]. (2023-08-07).https://www.who.int/publications/m/item/mpox-vaccine-tracker---list-of-vaccine-candidates-in-research---development.
    [92]
    Center For Drug Evaluation, NMPA. Information disclosure: catalog of accepted varieties[EB/OL]. (2023-07-13).https://www.cde.org.cn/main/xxgk/listpage/9f9c74c73e0f8f56a8bfbc646055026d.
    [93]
    Zhang RR, Wang ZJ, Zhu YL, et al. Rational development of multicomponent mRNA vaccine candidates against mpox[J]. Emerg Microbes Infect, 2023, 12(1): 2192815. doi: 10.1080/22221751.2023.2192815
    [94]
    Ottaviano G, Georgiadis C, Gkazi SA, et al. Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia[J]. Sci Transl Med, 2022, 14(668): eabq3010. doi: 10.1126/scitranslmed.abq3010
    [95]
    Bhujbal S, Bhujbal R, Giram P. An overview: CRISPR/Cas-based gene editing for viral vaccine development[J]. Expert Rev Vaccines, 2022, 21(11): 1581-1593. doi: 10.1080/14760584.2022.2112952
    [96]
    Nourani L, Mehrizi AA, Pirahmadi S, et al. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector[J]. Infect Genet Evol, 2023, 109: 105419. doi: 10.1016/j.meegid.2023.105419
    [97]
    Lutz ID, Wang SZ, Norn C, et al. Top-down design of protein architectures with reinforcement learning[J]. Science, 2023, 380(6642): 266-273. doi: 10.1126/science.adf6591
    [98]
    Naveed M, Mahmood S, Aziz T, et al. Designing a novel chimeric multi-epitope vaccine subunit against Staphylococcus argenteus through artificial intelligence approach integrating pan-genome analysis, in vitro identification, and immunogenicity profiling[J]. J Biomol Struct Dyn, 2023: 1-16.
    [99]
    Huang CQ, Vishwanath S, Carnell GW, et al. Immune imprinting and next-generation coronavirus vaccines[J]. Nat Microbiol, 2023, 8(11): 1971-1985. doi: 10.1038/s41564-023-01505-9
    [100]
    Liu B, Cao B, Wang C, et al. Immunogenicity and safety of childhood combination vaccines: a systematic review and meta-analysis[J]. Vaccines, 2022, 10(3): 472. doi: 10.3390/vaccines10030472
  • Related Articles

    [1]YIN Hao, WANG Wei, MIN Qianhao. Advances in mass-encoded probes for multiplex mass spectrometric detection[J]. Journal of China Pharmaceutical University, 2023, 54(6): 706-717. DOI: 10.11665/j.issn.1000-5048.2023062902
    [2]WANG Maolin, GUO Weiwei, ZHENG Yueqin. Advances in fluorescence probes for detection of hydrogen polysulfides[J]. Journal of China Pharmaceutical University, 2023, 54(5): 553-563. DOI: 10.11665/j.issn.1000-5048.2023042804
    [3]CHEN Yue, HAO Meixi, JU Caoyun, ZHANG Can. Design, synthesis and application of AIE fluorescent probe for lipid raft[J]. Journal of China Pharmaceutical University, 2020, 51(5): 514-521. DOI: 10.11665/j.issn.1000-5048.20200502
    [4]GE Yiran, YANG Jian, LI Yuyan, XU Yungen. Advances of near-infrared fluorescent probes for detection of Alzheimer′s disease[J]. Journal of China Pharmaceutical University, 2020, 51(2): 138-151. DOI: 10.11665/j.issn.1000-5048.20200203
    [5]GUO Anping, JIANG Fen, XU Xiaoli, YOU Qidong, LI Yuyan. Design, synthesis and biological application of affinity-based small molecular probe for Hsp90 endoplasmic reticulum paralogue of Grp94[J]. Journal of China Pharmaceutical University, 2019, 50(2): 161-167. DOI: 10.11665/j.issn.1000-5048.20190205
    [6]WANG Shuo, SUN Xiaoyan, CHEN Jinlong. Application of rhodamine-based fluorescent molecular probes in visualization of cellular pyruvic acid[J]. Journal of China Pharmaceutical University, 2018, 49(1): 79-86. DOI: 10.11665/j.issn.1000-5048.20180111
    [7]LI Li, XU Fengguo, CHEN Jinlong. Exploration of enzyme-MnO2 nanosheets hybridization probe for sensitively colorimetric self-indicating of glucose[J]. Journal of China Pharmaceutical University, 2017, 48(4): 453-460. DOI: 10.11665/j.issn.1000-5048.20170410
    [8]ZHOU Lin, LIU Wei, DI Bin, CHEN Jinlong. Synthesis and application of a fluorescent molecular probe for rapid detection of sulfur dioxide residues in traditional Chinese herbs[J]. Journal of China Pharmaceutical University, 2015, 46(4): 444-449. DOI: 10.11665/j.issn.1000-5048.20150410
    [9]ZHAO Zekai, WANG Lu, XUE Jingwei, ZHANG Can. Development of reduction response probes[J]. Journal of China Pharmaceutical University, 2014, 45(5): 535-539. DOI: 10.11665/j.issn.1000-5048.20140505
    [10]ZHAO Bo, CHEN Jiang-ning, ZHANG Jun-feng. Copper (II) fluorescent probe for detecting nitric oxide[J]. Journal of China Pharmaceutical University, 2011, 42(6): 490-494.

Catalog

    Article views (460) PDF downloads (106) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return