Citation: | LIU Jian. Exploration and practice of mRNA technology in vaccine development[J]. J China Pharm Univ, 2024, 55(1): 127 − 136. DOI: 10.11665/j.issn.1000-5048.2023122401 |
mRNA vaccine delivers antigen-encoding mRNA into human cells, which translates into corresponding antigen proteins in cells, and induce effective immune responses. Compared with traditional vaccines, mRNA vaccines have good safety profile, short development cycle, and high immune efficacy, and can stimulate both cellular immune response and humoral immune response. With the development of nucleotide modification technology and delivery technology, mRNA vaccines also have broad application prospects. This paper reviews mRNA technology and its application in vaccines, in the hope of offering theoretical and practical insights to researchers engaged or to be engaged in the development of mRNA vaccines.
[1] |
Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology[J]. Nat Rev Drug Discov, 2018, 17(4): 261-279. doi: 10.1038/nrd.2017.243
|
[2] |
Anderson EJ, Rouphael NG, Widge AT, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults[J]. N Engl J Med, 2020, 383(25): 2427-2438. doi: 10.1056/NEJMoa2028436
|
[3] |
Hou KK, Pan H, Schlesinger PH, et al. A role for peptides in overcoming endosomal entrapment in siRNA delivery—a focus on melittin[J]. Biotechnol Adv, 2015, 33(6): 931-940. doi: 10.1016/j.biotechadv.2015.05.005
|
[4] |
Zhong ZF, Mc Cafferty S, Combes F, et al. mRNA therapeutics deliver a hopeful message[J]. Nano Today, 2018, 23: 16-39. doi: 10.1016/j.nantod.2018.10.005
|
[5] |
Schlake T, Thess A, Thran M, et al. mRNA as novel technology for passive immunotherapy[J]. Cell Mol Life Sci, 2019, 76(2): 301-328. doi: 10.1007/s00018-018-2935-4
|
[6] |
Patel S, Athirasala A, Menezes PP, et al. Messenger RNA delivery for tissue engineering and regenerative medicine applications[J]. Tissue Eng Part A, 2019, 25(1/2): 91-112.
|
[7] |
Tavernier G, Andries O, Demeester J, et al. mRNA as gene therapeutic: how to control protein expression[J]. J Control Release, 2011, 150(3): 238-247. doi: 10.1016/j.jconrel.2010.10.020
|
[8] |
Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation[J]. Nucleic Acids Res, 2010, 38(17): 5884-5892. doi: 10.1093/nar/gkq347
|
[9] |
Fuchs AL, Neu A, Sprangers R. A general method for rapid and cost-efficient large-scale production of 5′ capped RNA[J]. RNA, 2016, 22(9): 1454-1466. doi: 10.1261/rna.056614.116
|
[10] |
Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion[J]. J Virol, 2012, 86(6): 2900-2910. doi: 10.1128/JVI.05738-11
|
[11] |
Kumar P, Sweeney TR, Skabkin MA, et al. Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5′-terminal regions of cap0-, cap1- and 5′ppp- mRNAs[J]. Nucleic Acids Res, 2014, 42(5): 3228-3245. doi: 10.1093/nar/gkt1321
|
[12] |
Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy[J]. Mol Cancer, 2021, 20(1): 41. doi: 10.1186/s12943-021-01335-5
|
[13] |
Holcik M, Liebhaber SA. Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA-protein complexes sharing cis and trans components[J]. Proc Natl Acad Sci U S A, 1997, 94(6): 2410-2414. doi: 10.1073/pnas.94.6.2410
|
[14] |
Bergman N, Moraes KCM, Anderson JR, et al. Lsm proteins bind and stabilize RNAs containing 5′ poly(A) tracts[J]. Nat Struct Mol Biol, 2007, 14(9): 824-831. doi: 10.1038/nsmb1287
|
[15] |
Zinckgraf JW, Silbart LK. Modulating gene expression using DNA vaccines with different 3′-UTRs influences antibody titer, seroconversion and cytokine profiles[J]. Vaccine, 2003, 21(15): 1640-1649. doi: 10.1016/S0264-410X(02)00740-5
|
[16] |
Linares-Fernández S, Lacroix C, Exposito JY, et al. Tailoring mRNA vaccine to balance innate/adaptive immune response[J]. Trends Mol Med, 2020, 26(3): 311-323. doi: 10.1016/j.molmed.2019.10.002
|
[17] |
Xiong QQ, Lee GY, Ding JX, et al. Biomedical applications of mRNA nanomedicine[J]. Nano Res, 2018, 11(10): 5281-5309. doi: 10.1007/s12274-018-2146-1
|
[18] |
Mugridge JS, Coller J, Gross JD. Structural and molecular mechanisms for the control of eukaryotic 5′-3′ mRNA decay[J]. Nat Struct Mol Biol, 2018, 25(12): 1077-1085. doi: 10.1038/s41594-018-0164-z
|
[19] |
Choi YH, Hagedorn CH. Purifying mRNAs with a high-affinity eIF4E mutant identifies the short 3′ poly(A) end phenotype[J]. Proc Natl Acad Sci U S A, 2003, 100(12): 7033-7038. doi: 10.1073/pnas.1232347100
|
[20] |
Jalkanen AL, Coleman SJ, Wilusz J. Determinants and implications of mRNA poly(A) tail size: does this protein make my tail look big?[J]. Semin Cell Dev Biol, 2014, 34: 24-32. doi: 10.1016/j.semcdb.2014.05.018
|
[21] |
Gallie DR. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency[J]. Genes Dev, 1991, 5(11): 2108-2116. doi: 10.1101/gad.5.11.2108
|
[22] |
Körner CG, Wahle E. Poly(A) tail shortening by a mammalian poly(A)-specific 3′-exoribonuclease[J]. J Biol Chem, 1997, 272(16): 10448-10456. doi: 10.1074/jbc.272.16.10448
|
[23] |
Kudla G, Lipinski L, Caffin F, et al. High guanine and cytosine content increases mRNA levels in mammalian cells[J]. PLoS Biol, 2006, 4(6): e180. doi: 10.1371/journal.pbio.0040180
|
[24] |
Diebold SS, Massacrier C, Akira S, et al. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides[J]. Eur J Immunol, 2006, 36(12): 3256-3267. doi: 10.1002/eji.200636617
|
[25] |
Karikó K, Buckstein M, Ni HP, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA[J]. Immunity, 2005, 23(2): 165-175. doi: 10.1016/j.immuni.2005.06.008
|
[26] |
Andries O, Mc Cafferty S, De Smedt SC, et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice[J]. J Control Release, 2015, 217: 337-344. doi: 10.1016/j.jconrel.2015.08.051
|
[27] |
Karikó K, Weissman D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development[J]. Curr Opin Drug Discov Devel, 2007, 10(5): 523-532.
|
[28] |
Kormann MSD, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice[J]. Nat Biotechnol, 2011, 29(2): 154-157. doi: 10.1038/nbt.1733
|
[29] |
Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases[J]. Methods Mol Biol, 2017, 1499: 109-121.
|
[30] |
Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability[J]. Mol Ther, 2008, 16(11): 1833-1840. doi: 10.1038/mt.2008.200
|
[31] |
Mulroney TE, Pöyry T, Yam-Puc JC, et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting[J]. Nature, 2024, 625(7993): 189-194. doi: 10.1038/s41586-023-06800-3
|
[32] |
Henninger HP, Hoffmann R, Grewe M, et al. Purification and quantitative analysis of nucleic acids by anion-exchange high-performance liquid chromatography[J]. Biol Chem Hoppe Seyler, 1993, 374(8): 625-634.
|
[33] |
Karikó K, Muramatsu H, Ludwig J, et al. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA[J]. Nucleic Acids Res, 2011, 39(21): e142. doi: 10.1093/nar/gkr695
|
[34] |
Baiersdörfer M, Boros G, Muramatsu H, et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA[J]. Mol Ther Nucleic Acids, 2019, 15: 26-35. doi: 10.1016/j.omtn.2019.02.018
|
[35] |
Nelson J, Sorensen EW, Mintri S, et al. Impact of mRNA chemistry and manufacturing process on innate immune activation[J]. Sci Adv, 2020, 6(26): eaaz6893. doi: 10.1126/sciadv.aaz6893
|
[36] |
Lin G, Yan H, Sun J, et al. Self-replicating RNA nanoparticle vaccine elicits protective immune responses against SARS-CoV-2[J]. Molecular Therapy-Nucleic Acids, 2023, 32: 650-666. doi: 10.1016/j.omtn.2023.04.021
|
[37] |
Rohner E, Yang R, Foo KS, et al. Unlocking the promise of mRNA therapeutics[J]. Nat Biotechnol, 2022, 40(11): 1586-1600. doi: 10.1038/s41587-022-01491-z
|
[38] |
Wu L, Zhou WH, Lin LH, et al. Delivery of therapeutic oligonucleotides in nanoscale[J]. Bioact Mater, 2021, 7: 292-323.
|
[39] |
Yan Y, Liu XY, Lu A, et al. Non-viral vectors for RNA delivery[J]. J Control Release, 2022, 342: 241-279. doi: 10.1016/j.jconrel.2022.01.008
|
[40] |
Zhang YB, Sun CZ, Wang C, et al. Lipids and lipid derivatives for RNA delivery[J]. Chem Rev, 2021, 121(20): 12181-12277. doi: 10.1021/acs.chemrev.1c00244
|
[41] |
Briuglia ML, Rotella C, McFarlane A, et al. Influence of cholesterol on liposome stability and on in vitro drug release[J]. Drug Deliv Transl Res, 2015, 5(3): 231-242. doi: 10.1007/s13346-015-0220-8
|
[42] |
Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro[J]. Biochem J, 1980, 186(2): 591-598. doi: 10.1042/bj1860591
|
[43] |
Mabrouk MT, Huang WC, Martinez-Sobrido L, et al. Advanced materials for SARS-CoV-2 vaccines[J]. Adv Mater, 2022, 34(12): e2107781. doi: 10.1002/adma.202107781
|
[44] |
Vander Straeten A, Sarmadi M, Daristotle JL, et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines[J]. Nat Biotechnol, 2023: 10.1038/s41587-10.1038/s41023-01774-z.
|
[45] |
Li M, Li Y, Peng K, et al. Engineering intranasal mRNA vaccines to enhance lymph node trafficking and immune responses[J]. Acta Biomater, 2017, 64: 237-248. doi: 10.1016/j.actbio.2017.10.019
|
[46] |
Qiu YS, Man RCH, Liao QY, et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide[J]. J Control Release, 2019, 314: 102-115. doi: 10.1016/j.jconrel.2019.10.026
|
[47] |
Xu Y, Thakur A, Zhang YB, et al. Inhaled RNA therapeutics for obstructive airway diseases: recent advances and future prospects[J]. Pharmaceutics, 2021, 13(2): 177. doi: 10.3390/pharmaceutics13020177
|
[48] |
Rowe SM, Zuckerman JB, Dorgan D, et al. Inhaled mRNA therapy for treatment of cystic fibrosis: interim results of a randomized, double-blind, placebo-controlled phase 1/2 clinical study[J]. J Cyst Fibros, 2023, 22(4): 656-664. doi: 10.1016/j.jcf.2023.04.008
|
[49] |
LoPresti ST, Arral ML, Chaudhary N, et al. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilitates targeted mRNA delivery to the spleen and lungs[J]. J Control Release, 2022, 345: 819-831. doi: 10.1016/j.jconrel.2022.03.046
|
[50] |
Pattipeiluhu R, Arias-Alpizar G, Basha G, et al. Anionic lipid nanoparticles preferentially deliver mRNA to the hepatic reticuloendothelial system[J]. Adv Mater, 2022, 34(16): e2201095. doi: 10.1002/adma.202201095
|
[51] |
Qiu M, Tang Y, Chen JJ, et al. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis[J]. Proc Natl Acad Sci U S A, 2022, 119(8): e2116271119. doi: 10.1073/pnas.2116271119
|
[52] |
Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing[J]. Nat Nanotechnol, 2020, 15(4): 313-320. doi: 10.1038/s41565-020-0669-6
|
[53] |
Dilliard SA, Cheng Q, Siegwart DJ. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles[J]. Proc Natl Acad Sci U S A, 2021, 118(52): e2109256118. doi: 10.1073/pnas.2109256118
|
[54] |
Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury[J]. Science, 2022, 375(6576): 91-96. doi: 10.1126/science.abm0594
|
[55] |
Su FY, Zhao QH, Dahotre SN, et al. In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles[J]. Sci Adv, 2022, 8(8): eabm7950.
|
[56] |
Shi D, Toyonaga S, Anderson DG. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles[J]. Nano Lett, 2023, 23(7): 2938-2944. doi: 10.1021/acs.nanolett.3c00304
|
[57] |
Breda L, Papp TE, Triebwasser MP, et al. In vivo hematopoietic stem cell modification by mRNA delivery[J]. Science, 2023, 381(6656): 436-443.
|
[58] |
Kheirolomoom A, Kare AJ, Ingham ES, et al. In situ T-cell transfection by anti-CD3-conjugated lipid nanoparticles leads to T-cell activation, migration, and phenotypic shift[J]. Biomaterials, 2022, 281: 121339.
|
[59] |
Cheng FR, Wang YP, Bai Y, et al. Research advances on the stability of mRNA vaccines[J]. Viruses, 2023, 15(3): 668. doi: 10.3390/v15030668
|
[60] |
Meulewaeter S, Nuytten G, Cheng MHY, et al. Continuous freeze-drying of messenger RNA lipid nanoparticles enables storage at higher temperatures[J]. J Control Release, 2023, 357: 149-160. doi: 10.1016/j.jconrel.2023.03.039
|
[61] |
Suzuki Y, Miyazaki T, Muto H, et al. Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman Primates[J]. Mol Ther Nucleic Acids, 2022, 30: 226-240. doi: 10.1016/j.omtn.2022.09.017
|
[62] |
Ai LX, Li YF, Zhou L, et al. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2[J]. Cell Discov, 2023, 9(1): 9. doi: 10.1038/s41421-022-00517-9
|
[63] |
Barbier AJ, Jiang AY, Zhang P, et al. The clinical progress of mRNA vaccines and immunotherapies[J]. Nat Biotechnol, 2022, 40(6): 840-854. doi: 10.1038/s41587-022-01294-2
|
[64] |
Moderna. mRNA pipeline[EB/OL]. [2023-12-24]. https://www.modernatx.com/research/product-pipeline.
|
[65] |
Moderna. Moderna announces first participants dosed in phase 3 study of seasonal influenza vaccine candidate mRNA-1010 [EB/OL]. (2022-06-07)[2023-12-24]. https://news.modernatx.com/news/news-details/2022/Moderna-Announces-First-Participants-Dosed-in-Phase-3-Study-of-Seasonal-Influenza-Vaccine-Candidate-mRNA-1010/default.aspx.
|
[66] |
Diken M, Kranz LM, Kreiter S, et al. mRNA: a versatile molecule for cancer vaccines[J]. Curr Issues Mol Biol, 2017, 22: 113-128.
|
[67] |
Sahin U, Oehm P, Derhovanessian E, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma[J]. Nature, 2020, 585(7823): 107-112. doi: 10.1038/s41586-020-2537-9
|
[68] |
Liang XP, Li DP, Leng SL, et al. RNA-based pharmacotherapy for tumors: from bench to clinic and back[J]. Biomed Pharmacother, 2020, 125: 109997. doi: 10.1016/j.biopha.2020.109997
|
[69] |
Kowalski PS, Rudra A, Miao L, et al. Delivering the messenger: advances in technologies for therapeutic mRNA delivery[J]. Mol Ther, 2019, 27(4): 710-728. doi: 10.1016/j.ymthe.2019.02.012
|
[70] |
Wadhwa A, Aljabbari A, Lokras A, et al. Opportunities and challenges in the delivery of mRNA-based vaccines[J]. Pharmaceutics, 2020, 12(2): 102. doi: 10.3390/pharmaceutics12020102
|
[71] |
Giopanou I, Pintzas A. RAS and BRAF in the foreground for non-small cell lung cancer and colorectal cancer: similarities and main differences for prognosis and therapies[J]. Crit Rev Oncol Hematol, 2020, 146: 102859. doi: 10.1016/j.critrevonc.2019.102859
|
[72] |
BioNTech. Breakthrough technologies across different drug classes to revolutionize medicine[EB/OL]. [2023-12-24]. https://www.biontech.com/int/en/home/pipeline-and-products/pipeline.html.
|
[1] | TANG Linfang, ZHANG Ziqiang, SU Rina, HE Shuwang, YAO Jing. Advances in taste-masking technology of oral paediatric medicine[J]. Journal of China Pharmaceutical University, 2017, 48(2): 135-141. DOI: 10.11665/j.issn.1000-5048.20170202 |
[2] | DENG Yan-ping, XIAO Yan-yu, PING Qi-neng, GU Xiao-zhen, BAO Quan-ying. Combined system of sinomenine hydrochloride sustained-release pellets[J]. Journal of China Pharmaceutical University, 2009, 40(3): 222-226. |
[3] | Preparation of Turbutaline Sulphate Pulsatile Controlled-release Pellets[J]. Journal of China Pharmaceutical University, 2004, (4): 17-20. |
[4] | Studies on Famotidine Pulsatile Controlled-Release Capsules[J]. Journal of China Pharmaceutical University, 1997, (3): 25-29. |
[6] | Study on the Controlled-Release System of Propranolol Hydrochloride[J]. Journal of China Pharmaceutical University, 1994, (2): 83-87. |
[7] | Studies on Isosorbide- 5- Mononitrate Controlled Release Tablets[J]. Journal of China Pharmaceutical University, 1993, (6): 327-330. |
[8] | Studies on Controlled Release Tablet of Piroxicam[J]. Journal of China Pharmaceutical University, 1990, (4): 201-204. |
[9] | DEVELOPMENT OF CONTROLLED-RELEASE CHLORPHENIRAMINE PELLETS[J]. Journal of China Pharmaceutical University, 1985, (1): 28-37. |
[10] | Li Hanyun, Li Fengwen, Liu Guojie, Chen Shuguang, Cheng Yun. PREDICTION OF SHELF-LIFE OF CONTROLLED- RELEASE OPHTHALMIC FILM OF PILOCARPINE[J]. Journal of China Pharmaceutical University, 1984, (3): 1-5. |
1. |
杨婧雯,陈芊,单云龙,刘嘉莉,尉宁,王婧,王广基,周芳. 间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展. 中国药科大学学报. 2024(01): 103-114 .
![]() | |
2. |
张强,罗曦,韩丽颖,王帅,包永睿,李天娇,孟宪生. 基于代谢组学研究hUC-MSCs-Exos联合复方木鸡颗粒抑制人肝癌细胞SMMC-7721增殖机制. 中华中医药杂志. 2024(10): 5481-5487 .
![]() |