Citation: | YAO Chunlu, ZHANG Weijie, ZHANG Yunlong, et al. Progress of single-cell protein imaging methods[J]. J China Pharm Univ, 2024, 55(2): 147 − 157. DOI: 10.11665/j.issn.1000-5048.2024010205 |
The differential expression and subcellular localization of single-cell proteins are closely related to the physiological state and pathological mechanisms of the body. The development of single-cell protein in situ imaging methods provides powerful tools for spatial single-cell proteomics research and single-cell protein profiling. This article summarizes the single-cell protein imaging methods developed in recent years, including the circulating immunofluorescence imaging methods based on ordered multi-round antibody incubation, mass spectrometry imaging based on metal element labeled antibodies, fluorescence imaging based on DNA-barcoded antibody, gene encoded fluorescence protein imaging and spectral imaging based on Raman spectroscopy or X-ray spectroscopy, with brief explanation of the imaging principles of these methods. It focuses on the multiple performance, imaging resolution and signal amplification performance of these methods, and analyzes their application characteristics in practical scientific research and clinical work, in the hope of providing some reference for the development of more revolutionary single-cell imaging methods, and promoting the development of biomedical and precision medicine.
[1] |
Labib M, Kelley SO. Single-cell analysis targeting the proteome[J]. Nat Rev Chem, 2020, 4(3): 143-158. doi: 10.1038/s41570-020-0162-7
|
[2] |
Van Oostrum M, Blok TM, Giandomenico SL, et al. The proteomic landscape of synaptic diversity across brain regions and cell types[J]. Cell, 2023, 186(24): 5411-5427. doi: 10.1016/j.cell.2023.09.028
|
[3] |
Wang G, Liu X, Wang K, et al. Deep-learning-enabled protein–protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution[J]. Nat Med, 2023, 29(8): 2007-2018. doi: 10.1038/s41591-023-02483-5
|
[4] |
Geffen Y, Anand S, Akiyama Y, et al. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation[J]. Cell, 2023, 186(18): 3945-3967. doi: 10.1016/j.cell.2023.07.013
|
[5] |
Gavin AC, Bösche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes[J]. Nature, 2002, 415(6868): 141-157. doi: 10.1038/415141a
|
[6] |
Zeng Q, Mousa M, Nadukkandy AS, et al. Understanding tumour endothelial cell heterogeneity and function from single-cell omics[J]. Nat Rev Cancer, 2023, 23(8): 544-564. doi: 10.1038/s41568-023-00591-5
|
[7] |
Messner CB, Demichev V, Muenzner J, et al. The proteomic landscape of genome-wide genetic perturbations[J]. Cell, 2023, 186(9): 2018-2034. doi: 10.1016/j.cell.2023.03.026
|
[8] |
Rood JE, Maartens A, Hupalowska A, et al. Impact of the Human Cell Atlas on medicine[J]. Nat Med, 2022, 28(12): 2486-2496. doi: 10.1038/s41591-022-02104-7
|
[9] |
Jain S, Pei L, Spraggins JM, et al. Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP)[J]. Nat Cell Biol, 2023, 25(8): 1089-1100. doi: 10.1038/s41556-023-01194-w
|
[10] |
Lundberg E, Borner GHH. Spatial proteomics: a powerful discovery tool for cell biology[J]. Nat Rev Mol Cell Biol, 2019, 20(5): 285-302. doi: 10.1038/s41580-018-0094-y
|
[11] |
Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome[J]. Science, 2017, 356(6340): eaar3321. doi: 10.1126/science.aal3321
|
[12] |
Reinhardt SCM, Masullo LA, Baudrexel I, et al. Ångström-resolution fluorescence microscopy[J]. Nature, 2023, 617(7962): 711-716. doi: 10.1038/s41586-023-05925-9
|
[13] |
Lan C, Kim J, Ulferts S, et al. Quantitative real-time in-cell imaging reveals heterogeneous clusters of proteins prior to condensation[J]. Nat Commun, 2023, 14(1): 4831. doi: 10.1038/s41467-023-40540-2
|
[14] |
Hickey JW, Neumann EK, Radtke AJ, et al. Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging[J]. Nat Methods, 2022, 19(3): 284-295. doi: 10.1038/s41592-021-01316-y
|
[15] |
TOMODA Y. Demonstration of fœtal erythrocyte by immunofluorescent staining[J]. Nature, 1964, 202(4935): 910-911. doi: 10.1038/202910a0
|
[16] |
Gerdes MJ, Sevinsky CJ, Sood A, et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue[J]. Proc Natl Acad Sci, 2013, 110(29): 11982-11987. doi: 10.1073/pnas.1300136110
|
[17] |
Lin JR, Fallahi-Sichani M, Sorger PK. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method[J]. Nat Commun, 2015, 6: 8390. doi: 10.1038/ncomms9390
|
[18] |
Gut G, Herrmann MD, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states[J]. Science, 2018, 361(6401): eaar7042. doi: 10.1126/science.aar7042
|
[19] |
Mondal M, Liao R, Xiao L, et al. Highly multiplexed single-cell in situ protein analysis with cleavable fluorescent antibodies[J]. Angew Chem Int Ed, 2017, 56(10): 2636-2639. doi: 10.1002/anie.201611641
|
[20] |
Ko J, Wilkovitsch M, Oh J, et al. Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes[J]. Nat Biotechnol, 2022, 40(11): 1654-1662. doi: 10.1038/s41587-022-01339-6
|
[21] |
Donnelly DP, Rawlins CM, DeHart CJ, et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry[J]. Nat Methods, 2019, 16(7): 587-594. doi: 10.1038/s41592-019-0457-0
|
[22] |
Zhang H, Delafield DG, Li L. Mass spectrometry imaging: the rise of spatially resolved single-cell omics[J]. Nat Methods, 2023, 20(3): 327-330. doi: 10.1038/s41592-023-01774-6
|
[23] |
Angelo M, Bendall SC, Finck R, et al. Multiplexed ion beam imaging of human breast tumors[J]. Nat Med, 2014, 20(4): 436-442. doi: 10.1038/nm.3488
|
[24] |
Giesen C, Wang HA, Schapiro D, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry[J]. Nat Methods, 2014, 11(4): 417-422. doi: 10.1038/nmeth.2869
|
[25] |
Hosogane T, Casanova R, Bodenmiller B. DNA-barcoded signal amplification for imaging mass cytometry enables sensitive and highly multiplexed tissue imaging[J]. Nat Methods, 2023, 20(9): 1304-1309. doi: 10.1038/s41592-023-01976-y
|
[26] |
Cornett DS, Reyzer ML, Chaurand P, et al. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems[J]. Nat Methods, 2007, 4(10): 828-833. doi: 10.1038/nmeth1094
|
[27] |
Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution[J]. Nat Methods, 2017, 14(1): 90-96. doi: 10.1038/nmeth.4071
|
[28] |
Niehaus M, Soltwisch J, Belov ME, et al. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution[J]. Nat Methods, 2019, 16(9): 925-931. doi: 10.1038/s41592-019-0536-2
|
[29] |
Lv H, Xie N, Li M, et al. DNA-based programmable gate arrays for general-purpose DNA computing[J]. Nature, 2023, 622(7982): 292-300. doi: 10.1038/s41586-023-06484-9
|
[30] |
Jungmann R, Steinhauer C, Scheible M, et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami[J]. Nano Lett, 2010, 10(11): 4756-4761. doi: 10.1021/nl103427w
|
[31] |
Chung KKH, Zhang Z, Kidd P, et al. Fluorogenic DNA-PAINT for faster, low-background super-resolution imaging[J]. Nat Methods, 2022, 19(5): 554-559. doi: 10.1038/s41592-022-01464-9
|
[32] |
Wang Y, Woehrstein JB, Donoghue N, et al. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues[J]. Nano Lett, 2017, 17(10): 6131-6139. doi: 10.1021/acs.nanolett.7b02716
|
[33] |
Goltsev Y, Samusik N, Kennedy-Darling J, et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging[J]. Cell, 2018, 174(4): 968-981. doi: 10.1016/j.cell.2018.07.010
|
[34] |
Zhao P, Bhowmick S, Yu J, et al. Highly multiplexed single-cell protein profiling with large-scale convertible DNA-antibody barcoded arrays[J]. Adv Sci, 2018, 5(9): 1800672. doi: 10.1002/advs.201800672
|
[35] |
Makino K, Susaki EA, Endo M, et al. Color-changing fluorescent barcode based on strand displacement reaction enables simple multiplexed labeling[J]. J Am Chem Soc, 2022, 144(4): 1572-1579. doi: 10.1021/jacs.1c09844
|
[36] |
Bi S, Yue S, Zhang S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine[J]. Chem Soc Rev, 2017, 46(14): 4281-4298. doi: 10.1039/C7CS00055C
|
[37] |
Saka SK, Wang Y, Kishi JY, et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues[J]. Nat Biotechnol, 2019, 37(9): 1080-1090. doi: 10.1038/s41587-019-0207-y
|
[38] |
Kishi JY, Schaus TE, Gopalkrishnan N, et al. Programmable autonomous synthesis of single-stranded DNA[J]. Nat Chem, 2018, 10(2): 155-164. doi: 10.1038/nchem.2872
|
[39] |
Mohsen MG, Kool ET. The discovery of rolling circle amplification and rolling circle transcription[J]. Acc Chem Res, 2016, 49(11): 2540-2550. doi: 10.1021/acs.accounts.6b00417
|
[40] |
Söderberg O, Gullberg M, Jarvius M, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation[J]. Nat Methods, 2006, 3(12): 995-1000. doi: 10.1038/nmeth947
|
[41] |
Liu X, Mao D, Song Y, et al. Computer-aided design of reversible hybridization chain reaction (CAD-HCR) enables multiplexed single-cell spatial proteomics imaging[J]. Sci Adv, 2022, 8(2): eabk0133. doi: 10.1126/sciadv.abk0133
|
[42] |
Wang M, Da Y, Tian Y. Fluorescent proteins and genetically encoded biosensors[J]. Chem Soc Rev, 2023, 52(4): 1189-1214. doi: 10.1039/D2CS00419D
|
[43] |
Miyawaki A. Green fluorescent protein glows gold[J]. Cell, 2008, 135(6): 987-990. doi: 10.1016/j.cell.2008.11.025
|
[44] |
Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression[J]. Science, 1994, 263(5148): 802-805. doi: 10.1126/science.8303295
|
[45] |
Tanenbaum ME, Gilbert LA, Qi LS, et al. A protein-tagging system for signal amplification in gene expression and fluorescence imaging[J]. Cell, 2014, 159(3): 635-646. doi: 10.1016/j.cell.2014.09.039
|
[46] |
Dufourt J, Bellec M, Trullo A, et al. Imaging translation dynamics in live embryos reveals spatial heterogeneities[J]. Science, 2021, 372(6544): 840-844. doi: 10.1126/science.abc3483
|
[47] |
Nagai T, Ibata K, Park ES, et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications[J]. Nat Biotechnol, 2002, 20(1): 87-90. doi: 10.1038/nbt0102-87
|
[48] |
Chu J, Oh Y, Sens A. et al. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo[J]. Nat Biotechnol, 2016, 34(7): 760-767. doi: 10.1038/nbt.3550
|
[49] |
Mena MA, Treynor TP, Mayo SL, et al. Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library[J]. Nat Biotechnol, 2006, 24(12): 1569-1571. doi: 10.1038/nbt1264
|
[50] |
A brilliant monomeric red fluorescent protein combining high brightness and fast maturation[J]. Nat Methods, 2023, 20 (4): 497-498.
|
[51] |
Qian Y, Celiker OT, Wang Z, et al. Temporally multiplexed imaging of dynamic signaling networks in living cells[J]. Cell, 2023, 186(25): 5656-5672. doi: 10.1016/j.cell.2023.11.010
|
[52] |
Cabantous S, Terwilliger TC, Waldo GS. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein[J]. Nat Biotechnol, 2005, 23(1): 102-107. doi: 10.1038/nbt1044
|
[53] |
Feng S, Sekine S, Pessino V, et al. Improved split fluorescent proteins for endogenous protein labeling[J]. Nat Commun, 2017, 8(1): 370. doi: 10.1038/s41467-017-00494-8
|
[54] |
Sekhon H, Ha JH, Presti MF, et al. Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells[J]. Nat Methods, 2023, 20(12): 1920-1929. doi: 10.1038/s41592-023-02065-w
|
[55] |
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review[J]. Chem Soc Rev, 2022, 51(1): 329-375. doi: 10.1039/C9CS00621D
|
[56] |
Xiong H, Shi L, Wei L, et al. Stimulated Raman excited fluorescence spectroscopy and imaging[J]. Nat Photonics, 2019, 13(6): 412-417. doi: 10.1038/s41566-019-0396-4
|
[57] |
Gong L, Zheng W, Ma Y, et al. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging[J]. Nat Photonics, 2020, 14(2): 115-122. doi: 10.1038/s41566-019-0535-y
|
[58] |
Gong TX, Das CM, Yin MJ, et al. Development of SERS tags for human diseases screening and detection[J]. Coordin Chem Rev, 2022, 470: 214711. doi: 10.1016/j.ccr.2022.214711
|
[59] |
Graziotto ME, Kidman CJ, Adair LD, et al. Towards multimodal cellular imaging: optical and X-ray fluorescence[J]. Chem Soc Rev, 2023, 52(23): 8295-8318. doi: 10.1039/D3CS00509G
|
[60] |
Kounatidis I, Stanifer ML, Phillips MA, et al. 3D correlative cryo-structured illumination fluorescence and soft X-ray microscopy elucidates reovirus intracellular release pthway[J]. Cell, 2020, 182(2): 515-530. doi: 10.1016/j.cell.2020.05.051
|
[61] |
Strotton M, Hosogane T, di Michiel M, et al. Multielement Z-tag imaging by X-ray fluorescence microscopy for next-generation multiplex imaging[J]. Nat Methods, 2023, 20(9): 1310-1322. doi: 10.1038/s41592-023-01977-x
|