• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
GU Xiao, XING Yingying. Research progress on Helicobacter pylori CagA-induced gastric inflammation-cancer transformation[J]. J China Pharm Univ, 2025, 56(1): 132 − 138. DOI: 10.11665/j.issn.1000-5048.2024022302
Citation: GU Xiao, XING Yingying. Research progress on Helicobacter pylori CagA-induced gastric inflammation-cancer transformation[J]. J China Pharm Univ, 2025, 56(1): 132 − 138. DOI: 10.11665/j.issn.1000-5048.2024022302

Research progress on Helicobacter pylori CagA-induced gastric inflammation-cancer transformation

Funds: This study was supported by the National Natural Science Foundation of China (No. 81971562), and 2024 Hainan Health Science and Technology Innovation Joint Project(WSJK2024MS230)
More Information
  • Received Date: February 22, 2024
  • Helicobacter pylori (Hp) is currently classified as a class I carcinogen that can cause gastric cancer, research in recent years on how Hp infection causes the occurrence and progression of gastric cancer has attracted much attention. As the primary virulence factor of Hp, cytotoxicity-associated gene A (CagA) has been extensively studied and reported to function as a key excreted toxin for Hp to induce gastric infection, colonization and promote inflammatory-carcinogenic transformation of host cells. Patients infected with CagA-positive strains have a higher risk of developing tumors compared to those infected with CagA-negative strains. Based on previous studies, this article further elaborates on the import process, biological activity, and related molecular mechanisms of virulence protein CagA in the occurrence and development of gastric cancer induced by Hp infection.

  • [1]
    Burucoa C, Axon A. Epidemiology of Helicobacter pylori infection[J]. Helicobacter, 2017, 22(Suppl 1). doi: 10.1111/hel.12403.
    [2]
    Carter EL, Boer JL, Farrugia MA, et al. Function of UreB in Klebsiella aerogenes urease[J]. Biochemistry, 2011, 50(43): 9296-9308. doi: 10.1021/bi2011064
    [3]
    Aziz F, Khan I, Shukla S, et al. Partners in crime: the Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer[J]. Pharmacol Ther, 2022, 232: 107994. doi: 10.1016/j.pharmthera.2021.107994
    [4]
    Cover TL, Lacy DB, Ohi MD. The Helicobacter pylori cag type IV secretion system[J]. Trends Microbiol, 2020, 28(8): 682-695. doi: 10.1016/j.tim.2020.02.004
    [5]
    Singh N, Baby D, Rajguru J, et al. Inflammation and cancer[J]. Ann Afr Med, 2019, 18(3): 121. doi: 10.4103/aam.aam_56_18
    [6]
    Ansari S, Yamaoka Y. Helicobacter pylori BabA in adaptation for gastric colonization[J]. World J Gastroenterol, 2017, 23(23): 4158-4169. doi: 10.3748/wjg.v23.i23.4158
    [7]
    Merino E, Flores-Encarnación M, Aguilar-Gutiérrez GR. Functional interaction and structural characteristics of unique components of Helicobacter pylori T4SS[J]. FEBS J, 2017, 284(21): 3540-3549. doi: 10.1111/febs.14092
    [8]
    Tan SM, Tompkins LS, Amieva MR. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche[J]. PLoS Pathog, 2009, 5(5): e1000407. doi: 10.1371/journal.ppat.1000407
    [9]
    Backert S, Bernegger S, Skórko-Glonek J, et al. Extracellular HtrA serine proteases: an emerging new strategy in bacterial pathogenesis[J]. Cell Microbiol, 2018, 20(6): e12845. doi: 10.1111/cmi.12845
    [10]
    Wu LL, Li X, Li ZT, et al. HtrA serine proteases in cancers: a target of interest for cancer therapy[J]. Biomedecine Pharmacother, 2021, 139: 111603. doi: 10.1016/j.biopha.2021.111603
    [11]
    Xue RY, Liu C, Xiao QT, et al. HtrA family proteases of bacterial pathogens: pros and cons for their therapeutic use[J]. Clin Microbiol Infect, 2021, 27(4): 559-564. doi: 10.1016/j.cmi.2020.12.017
    [12]
    Kim KA, Kim D, Kim JH, et al. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd. 3 brain endothelial cells and rat ischemic stroke models[J]. Fluids Barriers CNS, 2020, 17(1): 21. doi: 10.1186/s12987-020-00182-8
    [13]
    Kuo WT, Odenwald MA, Turner JR, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival[J]. Ann N Y Acad Sci, 2022, 1514(1): 21-33. doi: 10.1111/nyas.14798
    [14]
    Kuo WT, Shen L, Zuo L, et al. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression[J]. Gastroenterology, 2019, 157(5): 1323-1337. doi: 10.1053/j.gastro.2019.07.058
    [15]
    Torices S, Daire L, Simon S, et al. Occludin: a gatekeeper of brain Infection by HIV-1[J]. Fluids Barriers CNS, 2023, 20(1): 73. doi: 10.1186/s12987-023-00476-7
    [16]
    Vaswani CM, Varkouhi AK, Gupta S, et al. Preventing occludin tight-junction disruption via inhibition of microRNA-193b-5p attenuates viral load and influenza-induced lung injury[J]. Mol Ther, 2023, 31(9): 2681-2701. doi: 10.1016/j.ymthe.2023.06.011
    [17]
    Hou JB, Yan D, Liu YD, et al. The roles of integrin α5β1 in human cancer[J]. Onco Targets Ther, 2020, 13: 13329-13344. doi: 10.2147/OTT.S273803
    [18]
    Zhou XM, Zhu HZ, Luo C, et al. Targeting integrin α5β1 in urological tumors: opportunities and challenges[J]. Front Oncol, 2023, 13: 1165073. doi: 10.3389/fonc.2023.1165073
    [19]
    Xiong X, Li BW, Zhou ZX, et al. The VirB system plays a crucial role in Brucella intracellular infection[J]. Int J Mol Sci, 2021, 22(24): 13637. doi: 10.3390/ijms222413637
    [20]
    Li YG, Christie PJ. The Agrobacterium VirB/VirD4 T4SS: mechanism and architecture defined through in vivo mutagenesis and chimeric systems[J]. Curr Top Microbiol Immunol, 2018, 418: 233-260.
    [21]
    Choi YH, Lai J, Kim MA, et al. CagL polymorphisms between East Asian and Western Helicobacter pylori are associated with different abilities to induce IL-8 secretion[J]. J Microbiol, 2021, 59(8): 763-770. doi: 10.1007/s12275-021-1136-2
    [22]
    Skoog EC, Morikis VA, Martin ME, et al. CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding[J]. mBio, 2018, 9(3): e00717-e00718.
    [23]
    Thomas MP, Erneux C, Potter BVL. SHIP2: structure, function and inhibition[J]. Chembiochem, 2017, 18(3): 233-247. doi: 10.1002/cbic.201600541
    [24]
    Fujii Y, Murata-Kamiya N, Hatakeyama M. Helicobacter pylori CagA oncoprotein interacts with SHIP2 to increase its delivery into gastric epithelial cells[J]. Cancer Sci, 2020, 111(5): 1596-1606. doi: 10.1111/cas.14391
    [25]
    Amorim S, Soares da Costa D, Pashkuleva I, et al. Hyaluronic acid of low molecular weight triggers the invasive “hummingbird” phenotype on gastric cancer cells[J]. Adv Biosyst, 2020, 4(11): e2000122. doi: 10.1002/adbi.202000122
    [26]
    Gundamaraju R, Lu WY, Paul MK, et al. Autophagy and EMT in cancer and metastasis: who controls whom[J]? Biochim Biophys Acta Mol Basis Dis, 2022, 1868(9): 166431. doi: 10.1016/j.bbadis.2022.166431
    [27]
    Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors[J]. Trends Cancer, 2020, 6(11): 942-950. doi: 10.1016/j.trecan.2020.06.005
    [28]
    Chen HX, Zhou L, Wu XR, et al. The PI3K/AKT pathway in the pathogenesis of prostate cancer[J]. Front Biosci (Landmark Ed), 2016, 21(5): 1084-1091. doi: 10.2741/4443
    [29]
    Peng Y, Wang YY, Zhou C, et al. PI3K/akt/mTOR pathway and its role in cancer therapeutics: are we making headway[J]? Front Oncol, 2022, 12: 819128. doi: 10.3389/fonc.2022.819128
    [30]
    Liu JQ, Xiao Q, Xiao JN, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3. doi: 10.1038/s41392-021-00762-6
    [31]
    Yu FY, Yu CH, Li FF, et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther, 2021, 6(1): 307. doi: 10.1038/s41392-021-00701-5
    [32]
    Jiang FY, Bian GX, Li JH. ASPP2 promotes cell apoptosis in cervical cancer through inhibiting autophagy[J]. Exp Ther Med, 2022, 24(6): 726. doi: 10.3892/etm.2022.11662
    [33]
    Liang BB, Jiang Y, Song SH, et al. ASPP2 suppresses tumour growth and stemness characteristics in HCC by inhibiting Warburg effect via WNT/β-catenin/HK2 axis[J]. J Cell Mol Med, 2023, 27(5): 659-671. doi: 10.1111/jcmm.17687
    [34]
    Hároníková L, Vojtěšek B. HDM2 and HDMX proteins in human cancer[J]. Klin Onkol, 2018, 31(Suppl 2): 63-70.
    [35]
    Quotti Tubi L, Mandato E, Canovas Nunes S, et al. CK2β-regulated signaling controls B cell differentiation and function[J]. Front Immunol, 2022, 13: 959138.
    [36]
    Chen LB, Jin XT, Ma J, et al. YAP at the progression of inflammation[J]. Front Cell Dev Biol, 2023, 11: 1204033. doi: 10.3389/fcell.2023.1204033
    [37]
    Wu ZM, Guan KL. Hippo signaling in embryogenesis and development[J]. Trends Biochem Sci, 2021, 46(1): 51-63. doi: 10.1016/j.tibs.2020.08.008
    [38]
    Stair MI, Winn CB, Burns MA, et al. Effects of chronic Helicobacter pylori strain PMSS1 infection on whole brain and gastric iron homeostasis in male INS-GAS mice[J]. Microbes Infect, 2023, 25(3): 105045. doi: 10.1016/j.micinf.2022.105045
    [39]
    Cheng TY, Wu MS, Hua KT, et al. Cyr61/CTGF/Nov family proteins in gastric carcinogenesis[J]. World J Gastroenterol, 2014, 20(7): 1694-1700. doi: 10.3748/wjg.v20.i7.1694
    [40]
    Boissier P, Huynh-Do U. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling[J]. Cell Signal, 2014, 26(3): 483-491
    [41]
    Zoli M. Twist-stretch relations in nucleic acids[J]. Eur Biophys J, 2023, 52(8): 641-650. doi: 10.1007/s00249-023-01669-6
    [42]
    Corso G, Figueiredo J, de Angelis SP, et al. E-cadherin deregulation in breast cancer[J]. J Cell Mol Med, 2020, 24(11): 5930-5936. doi: 10.1111/jcmm.15140
    [43]
    Takahashi-Kanemitsu A, Lu MX, Knight CT, et al. The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells[J]. Sci Signal, 2023, 16(794): eabp9020. doi: 10.1126/scisignal.abp9020
    [44]
    VanderVorst K, Dreyer CA, Konopelski SE, et al. Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis[J]. Cancer Res, 2019, 79(8): 1719-1729. doi: 10.1158/0008-5472.CAN-18-2757
    [45]
    Asmamaw MD, Shi XJ, Zhang LR, et al. A comprehensive review of SHP2 and its role in cancer[J]. Cell Oncol (Dordr), 2022, 45(5): 729-753.
    [46]
    Imai S, Ooki T, Murata-Kamiya N, et al. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis[J]. Cell Host Microbe, 2021, 29(6): 941-958. e10.
    [47]
    Yamahashi Y, Hatakeyama M. PAR1b takes the stage in the morphogenetic and motogenetic activity of Helicobacter pylori CagA oncoprotein[J]. Cell Adh Migr, 2013, 7(1): 11-18. doi: 10.4161/cam.21936
    [48]
    Bildik G, Acılan C, Sahin GN, et al. C-Abl is not actıvated in DNA damage-induced and Tap63-mediated oocyte apoptosıs in human ovary[J]. Cell Death Dis, 2018, 9(10): 943. doi: 10.1038/s41419-018-1026-7
    [49]
    González-Martín A, Moyano T, Gutiérrez DA, et al. C-Abl regulates a synaptic plasticity-related transcriptional program involved in memory and learning[J]. Prog Neurobiol, 2021, 205: 102122. doi: 10.1016/j.pneurobio.2021.102122
    [50]
    Keshet R, Adler J, Ricardo Lax I, et al. C-Abl antagonizes the YAP oncogenic function[J]. Cell Death Differ, 2015, 22(6): 935-945. doi: 10.1038/cdd.2014.182
    [51]
    Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer[J]. Cancer Sci, 2020, 111(5): 1443-1451. doi: 10.1111/cas.14404
    [52]
    Sharma R, Malviya R. Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188869. doi: 10.1016/j.bbcan.2023.188869
    [53]
    Zambelli A, Biamonti G, Amato A. HGF/c-met signalling in the tumor microenvironment[J]. Adv Exp Med Biol, 2021, 1270: 31-44.
    [54]
    Zhao Y, Ye WL, Wang YD, et al. HGF/c-met: a key promoter in liver regeneration[J]. Front Pharmacol, 2022, 13: 808855. doi: 10.3389/fphar.2022.808855
    [55]
    Galbán S, Duckett CS. XIAP as a ubiquitin ligase in cellular signaling[J]. Cell Death Differ, 2010, 17(1): 54-60. doi: 10.1038/cdd.2009.81
    [56]
    Liao Y, Zhao JJ, Bulek K, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis[J]. Nat Commun, 2020, 11(1): 900. doi: 10.1038/s41467-020-14698-y
    [57]
    Liu JY, Zhang DY, Luo WJ, et al. E3 ligase activity of XIAP RING domain is required for XIAP-mediated cancer cell migration, but not for its RhoGDI binding activity[J]. PLoS One, 2012, 7(4): e35682. doi: 10.1371/journal.pone.0035682
    [58]
    Palrasu M, Zaika E, El-Rifai W, et al. Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells[J]. J Clin Invest, 2020, 130(5): 2422-2434. doi: 10.1172/JCI130015
    [59]
    Palrasu M, Zaika E, Paulrasu K, et al. Helicobacter pylori pathogen inhibits cellular responses to oncogenic stress and apoptosis[J]. PLoS Pathog, 2022, 18(6): e1010628.
    [60]
    Liu ZX, Wu X, Tian YY, et al. H. pylori infection induces CXCL8 expression and promotes gastric cancer progress through downregulating KLF4[J]. Mol Carcinog, 2021, 60(8): 524-537. doi: 10.1002/mc.23309
    [61]
    Ou Y, Ren HF, Zhao RR, et al. Helicobacter pylori CagA promotes the malignant transformation of gastric mucosal epithelial cells through the dysregulation of the miR-155/KLF4 signaling pathway[J]. Mol Carcinog, 2019, 58(8): 1427-1437.
    [62]
    Zhao RR, Liu ZX, Xu WT, et al. Helicobacter pylori infection leads to KLF4 inactivation in gastric cancer through a TET1-mediated DNA methylation mechanism[J]. Cancer Med, 2020, 9(7): 2551-2563.
    [63]
    Karakus C. Development of a lateral flow immunoassay strip for rapid detection of CagA antigen of Helicobacter pylori[J]. J Immunoassay Immunochem, 2015, 36(3): 324-333. doi: 10.1080/15321819.2014.952440
    [64]
    Xu SH, Wu XQ, Zhang XY, et al. CagA orchestrates eEF1A1 and PKCδ to induce interleukin-6 expression in Helicobacter pylori-infected gastric epithelial cells[J]. Gut Pathog, 2020, 12: 31. doi: 10.1186/s13099-020-00368-3
    [65]
    Azadegan-Dehkordi F, Bagheri N, Shirzad M, et al. Correlation between mucosal IL-6 mRNA expression level and virulence factors of Helicobacter pylori in Iranian adult patients with chronic gastritis[J]. Jundishapur J Microbiol, 2015, 8(8): e21701.
    [66]
    Figura N, Di Cairano G, Moretti E, et al. Helicobacter pylori infection and autoimmune thyroid diseases: the role of virulent strains[J]. Antibiotics, 2019, 9(1): 12.
    [67]
    Lee KS, Kalantzis A, Jackson CB, et al. Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3γ via gastric STAT3 activation[J]. PLoS One, 2012, 7(2): e30786.
    [68]
    Hayashi Y, Tsujii M, Wang J, et al. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis[J]. Gut, 2013, 62(11): 1536-1546. doi: 10.1136/gutjnl-2011-301625
    [69]
    Yang FH, Xu YG, Liu C, et al. NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression[J]. Cell Death Dis, 2018, 9(1): 12. doi: 10.1038/s41419-017-0020-9
    [70]
    Wu J, Ji XW, Zhu LL, et al. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells[J]. Cancer Lett, 2013, 329(2): 155-163. doi: 10.1016/j.canlet.2012.10.038
  • Related Articles

    [1]WANG Xuefang, ZHAO Yang, LIU Zhuqing, GUO Le, ZHONG Feiliang, LUO Xuegang. Genetic engineering and molecular modification of recombinant fully humanized single-domain antibody against Helicobacter pylori UreB[J]. Journal of China Pharmaceutical University, 2024, 55(5): 666-672. DOI: 10.11665/j.issn.1000-5048.2023122903
    [2]ZHU Hao, LIU Nan. Advances in research progress on acid tolerance mechanism of Gram- negative bacteria mediated by molecular chaperone protein[J]. Journal of China Pharmaceutical University, 2021, 52(2): 164-170. DOI: 10.11665/j.issn.1000-5048.20210204
    [3]ZENG Jingxia, ZHOU Wei, JIANG Yuteng, XUE Chunling. Antiviral and anti-inflammatory mechanism of Anti-601 Mixture based on network pharmacology and molecular docking[J]. Journal of China Pharmaceutical University, 2020, 51(5): 577-583. DOI: 10.11665/j.issn.1000-5048.20200509
    [4]CAI Di, TIAN Hong, YAO Wenbing. Molecular dynamics simulation and analysis of BAFF which is incorporated with p-nitro-L-phenylalanine[J]. Journal of China Pharmaceutical University, 2017, 48(2): 227-232. DOI: 10.11665/j.issn.1000-5048.20170215
    [5]DONG Xue, GU Yueqing. Application of optical molecular imaging technology in the diagnosis and treatment of diseases[J]. Journal of China Pharmaceutical University, 2014, 45(2): 145-152. DOI: 10.11665/j.issn.1000-5048.20140203
    [6]HU Shan, DENG Yongchuan. Mechanism of isorhamnetin on breast cancer cells[J]. Journal of China Pharmaceutical University, 2013, 44(6): 563-567. DOI: 10.11665/j.issn.1000-5048.20130615
    [7]SONG Jiemei, WEN Xiaoan, SUN Hongbin. Progress in pathogenesis and therapeutic drugs of pulmonary arterial hypertension[J]. Journal of China Pharmaceutical University, 2013, 44(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20130101
    [8]SU Yan-lei, ZHANG Ji, JIANG Jian-qin, LIN Ke-jiang, SHEN Jian-gang. Antioxidant mechanism analysis of some flavones from Astragalus membranaceus(Fish.) Bge.Var.mongholicus(Bge.) Hsiao by quantum chemistry[J]. Journal of China Pharmaceutical University, 2011, 42(1): 39-43.
    [9]Molecular Mechanics and Molecular Pharmacology of Cholinergic and Cholinolytic Drugs[J]. Journal of China Pharmaceutical University, 1993, (6): 363-370.
    [10]Study on the Molecular Weights of Complicated Organic Compounds by Self-Chemical Ionization/Fourier Transform Mass Spectrometry[J]. Journal of China Pharmaceutical University, 1991, (5): 275-278.

Catalog

    Article views (22) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return