Citation: | LI Anqin, PANG Luxin, CHAI Yuanyuan, et al. Plasma and hepatic free fatty acid, tricarboxylic acid cycle, and ketone bodies metabolic profiles in progressive Gao-Binge model[J]. J China Pharm Univ, 2025, 56(2): 196 − 206. DOI: 10.11665/j.issn.1000-5048.2024030502 |
To investigate the correlation between hepatic lipid accumulation and the metabolic profiles of free fatty acids(FFAs), tricarboxylic acid (TCA) cycle, and ketone body in alcoholic fatty liver disease (AFLD), a chronic plus acute alcohol feeding model (Gao-Binge model) was employed using C57BL/6N mice to simulate different stages of AFLD. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to measure the levels of FFAs, TCA cycle intermediates, and ketone bodies in mouse liver tissue and plasma, followed by Pearson correlation analysis. The study revealed that both acute and chronic models showed significant increases in total FFAs, saturated FFAs and short-chain FFAs, as well as β-hydroxybutyric acid(HDBT) in plasma and liver, indicating FFA metabolic profile disturbances in the Gao-Binge model. Moreover, in both models, acetic acid (AA), 2-Methylbutyric acid (2-meBA), and HDBT displayed strong positive correlations with hepatic injury markers in plasma and liver samples (for instance, in the acute model plasma data, r = 0.834, 0.699, 0.818, P<0.05), while pyruvic acid (PRA) showed a strong negative correlation (r = −0.66, P<0.05). These findings suggest that FFAs, TCA cycle, and ketone body metabolism are disrupted in the alcoholic liver disease in mice model, and metabolites such as AA, 2-meBA, HDBT and PRA may serve as potential biomarkers for AFLD, which would be helpful in the diagnosis and treatment of this disease.
[1] |
Kourkoumpetis T, Sood G. Pathogenesis of alcoholic liver disease: an update[J]. Clin Liver Dis, 2019, 23(1): 71-80. doi: 10.1016/j.cld.2018.09.006
|
[2] |
Osna NA, Donohue TM Jr, Kharbanda KK. Alcoholic liver disease: pathogenesis and current management[J]. Alcohol Res, 2017, 38(2): 147-161.
|
[3] |
You M, Arteel GE. Effect of ethanol on lipid metabolism[J]. J Hepatol, 2019, 70(2): 237-248. doi: 10.1016/j.jhep.2018.10.037
|
[4] |
Jump DB. Fatty acid regulation of gene transcription[J]. Crit Rev Clin Lab Sci, 2004, 41(1): 41-78. doi: 10.1080/10408360490278341
|
[5] |
Wrzosek M, Zawadzka Z, Sawicka A, et al. Impact of fatty acids on obesity-associated diseases and radical weight reduction[J]. Obes Surg, 2022, 32(2): 428-440. doi: 10.1007/s11695-021-05789-w
|
[6] |
Cotter DG, Ercal B, Huang XJ, et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia[J]. J Clin Invest, 2014, 124(12): 5175-5190. doi: 10.1172/JCI76388
|
[7] |
Pan A, Sun XM, Huang FQ, et al. The mitochondrial β-oxidation enzyme HADHA restrains hepatic glucagon response by promoting β-hydroxybutyrate production[J]. Nat Commun, 2022, 13(1): 386. doi: 10.1038/s41467-022-28044-x
|
[8] |
Satapati S, Sunny NE, Kucejova B, et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver[J]. J Lipid Res, 2012, 53(6): 1080-1092. doi: 10.1194/jlr.M023382
|
[9] |
Sunny NE, Parks EJ, Browning JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease[J]. Cell Metab, 2011, 14(6): 804-810. doi: 10.1016/j.cmet.2011.11.004
|
[10] |
Patterson RE, Kalavalapalli S, Williams CM, et al. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity[J]. Am J Physiol Endocrinol Metab, 2016, 310(7): E484-E494. doi: 10.1152/ajpendo.00492.2015
|
[11] |
Lamas-Paz A, Hao FJ, Nelson LJ, et al. Alcoholic liver disease: utility of animal models[J]. World J Gastroenterol, 2018, 24(45): 5063-5075. doi: 10.3748/wjg.v24.i45.5063
|
[12] |
Brandon-Warner E, Schrum LW, Schmidt CM, et al. Rodent models of alcoholic liver disease: of mice and men[J]. Alcohol, 2012, 46(8): 715-725. doi: 10.1016/j.alcohol.2012.08.004
|
[13] |
Liu X, Zhang QQ, Wang SX, et al. Influencing factors and research progress of establishing animal models of rodent alcohol drinking[J]. Chin J Pharmacol Toxicol (中国药理学与毒理学杂志), 2017, 31(6): 607-614.
|
[14] |
Bertola A, Mathews S, Ki SH, et al. Mouse model of chronic and binge ethanol feeding (the NIAAA model)[J]. Nat Protoc, 2013, 8(3): 627-637. doi: 10.1038/nprot.2013.032
|
[15] |
Alcohol consumption among young adults ages 18–24 in the United States: results from the 2001–2002 NESARC survey[J]. Alcohol Res Health, 2004, 28 (4): 269-280.
|
[16] |
Aroor AR, Jackson DE, Shukla SD. Elevated activation of ERK1 and ERK2 accompany enhanced liver injury following alcohol binge in chronically ethanol-fed rats[J]. Alcohol Clin Exp Res, 2011, 35(12): 2128-2138. doi: 10.1111/j.1530-0277.2011.01577.x
|
[17] |
Zhang JW, Zhao Y, Xu CF, et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study[J]. Sci Rep, 2014, 4: 5832. doi: 10.1038/srep05832
|
[18] |
Walle P, Takkunen M, Männistö V, et al. Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity[J]. Metabolism, 2016, 65(5): 655-666. doi: 10.1016/j.metabol.2016.01.011
|
[19] |
Yang LL, Yang X, Kong XL, et al. Covariation analysis of serumal and urinary metabolites suggests aberrant Glycine and fatty acid metabolism in chronic hepatitis B[J]. PLoS One, 2016, 11(5): e0156166. doi: 10.1371/journal.pone.0156166
|
[20] |
Yoo HJ, Jung KJ, Kim M, et al. Liver cirrhosis patients who had normal liver function before liver cirrhosis development have the altered metabolic profiles before the disease occurrence compared to healthy controls[J]. Front Physiol, 2019, 10: 1421. doi: 10.3389/fphys.2019.01421
|
[21] |
Gao ZH, Shen YQ. Analysis of serum free fatty acid levels in patients with non-alcoholic fatty liver disease[J]. Chin Prac Med (中国实用医药), 2015, 10(28): 43-44.
|
[22] |
Gou XJ, Feng Q, Hu YY. Effects of qushi Huayu formula on serum free fatty acid profile in non-alcoholic fatty liver disease model rats[J]. China Pharm (中国药房), 2018, 29(24): 3330-3335.
|
[23] |
Ueno A, Lazaro R, Wang PY, et al. Mouse intragastric infusion (iG) model[J]. Nat Protoc, 2012, 7(4): 771-781. doi: 10.1038/nprot.2012.014
|
[24] |
Leung TM, Lu YK, Yan W, et al. Argininosuccinate synthase conditions the response to acute and chronic ethanol-induced liver injury in mice[J]. Hepatology, 2012, 55(5): 1596-1609. doi: 10.1002/hep.25543
|
[25] |
Gorica E, Calderone V. Arachidonic acid derivatives and neuroinflammation[J]. CNS Neurol Disord Drug Targets, 2022, 21(2): 118-129. doi: 10.2174/1871527320666210208130412
|
[26] |
Chai YY. Research on the effect and mechanism of disrupted metabolic profiling in liver injury induced by co-administration of valproic acid and acetaminophen(丙戊酸和对乙酰氨基酚联合用药致小鼠肝脏损伤的代谢轮廓改变及其机制研究)[D]. Nanjing: China Pharmaceutical University, 2022.
|
[27] |
Jia JP. Statistics[M]. 7th ed. Beijing: China Renmin University Press, 2018: 240.
|
[28] |
Lefkowitch JH. Morphology of alcoholic liver disease[J]. Clin Liver Dis, 2005, 9(1): 37-53. doi: 10.1016/j.cld.2004.11.001
|
[29] |
Zhao ZW, Yu MG, Crabb D, et al. Ethanol-induced alterations in fatty acid-related lipids in serum and tissues in mice[J]. Alcohol Clin Exp Res, 2011, 35(2): 229-234. doi: 10.1111/j.1530-0277.2010.01338.x
|
[30] |
Zhao ZH, Shi AM, Wang Q. Research progress and development trend of high-oleic acid peanuts[J]. Cereals Oils (粮食与油脂), 2019, 32(9): 1-4.
|
[31] |
Chaaba R, Bouaziz A, Ben Amor A, et al. Fatty acid profile and genetic variants of proteins involved in fatty acid metabolism could be considered as disease predictor[J]. Diagnostics, 2023, 13(5): 979. doi: 10.3390/diagnostics13050979
|
[32] |
Gunduz F, Aboulnasr FM, Chandra PK, et al. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture[J]. Virol J, 2012, 9: 143. doi: 10.1186/1743-422X-9-143
|
[33] |
Oscarsson J, Önnerhag K, Risérus U, et al. Effects of free omega-3 carboxylic acids and fenofibrate on liver fat content in patients with hypertriglyceridemia and non-alcoholic fatty liver disease: a double-blind, randomized, placebo-controlled study[J]. J Clin Lipidol, 2018, 12 (6): 1390-1403. e4.
|
[34] |
Zhao X, Zhang XY, Ye B, et al. Effect of unsaturated fatty acids on glycation product formation pathways[J]. Food Res Int, 2021, 143: 110288. doi: 10.1016/j.foodres.2021.110288
|
[35] |
Mortensen MS, Ruiz J, Watts JL. Polyunsaturated fatty acids drive lipid peroxidation during ferroptosis[J]. Cells, 2023, 12(5): 804. doi: 10.3390/cells12050804
|
[36] |
Lawman HG, D Fryar C, Gu QP, et al. The role of prescription medications in the association of self-reported sleep duration and obesity in U. S. adults, 2007—2012[J]. Obesity, 2016, 24(10): 2210-2216. doi: 10.1002/oby.21600
|
[37] |
Takeuchi T, Kameyama K, Miyauchi E, et al. Fatty acid overproduction by gut commensal microbiota exacerbates obesity[J]. Cell Metab, 2023, 35 (2): 361-375. e9.
|
[38] |
Calder PC. Functional roles of fatty acids and their effects on human health[J]. JPEN J Parenter Enteral Nutr, 2015, 39 (1 Suppl): 18S-32S.
|
[39] |
Setshedi M, Wands JR, de la Monte SM. Acetaldehyde adducts in alcoholic liver disease[J]. Oxid Med Cell Longev, 2010, 3(3): 178-185. doi: 10.4161/oxim.3.3.12288
|
[40] |
Kendrick SFW, O’Boyle G, Mann J, et al. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis[J]. Hepatology, 2010, 51(6): 1988-1997. doi: 10.1002/hep.23572
|
[41] |
Liangpunsakul S, Rahmini Y, Ross RA, et al. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(5): G515-G523. doi: 10.1152/ajpgi.00455.2011
|
[42] |
Shen Z, Ajmo JM, Rogers CQ, et al. Role of SIRT1 in regulation of LPS- or two ethanol metabolites-induced TNF-alpha production in cultured macrophage cell lines[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(5): G1047-G1053. doi: 10.1152/ajpgi.00016.2009
|
[43] |
Chang BX, Wang H, Zou ZS, et al. Pathogenesis and novel therapeutic targets of alcoholic liver disease[J]. J Clin Hepatol (临床肝胆病杂志), 2014, 30(2): 113-117.
|
[44] |
Puchalska P, Crawford PA. Metabolic and signaling roles of ketone bodies in health and disease[J]. Annu Rev Nutr, 2021, 41: 49-77. doi: 10.1146/annurev-nutr-111120-111518
|
[45] |
Tao L. Oxidation of polyunsaturated fatty acids and its impact on food quality and human health[J]. Adv Food Technol Nutr Sci Open J, 2015, 1(6): 135-142. doi: 10.17140/AFTNSOJ-1-123
|
[46] |
Morigny P, Boucher J, Arner P, et al. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics[J]. Nat Rev Endocrinol, 2021, 17(5): 276-295. doi: 10.1038/s41574-021-00471-8
|
[47] |
Brestoff JR, Wilen CB, Moley JR, et al. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity[J]. Cell Metab, 2021, 33(2): 270-282. doi: 10.1016/j.cmet.2020.11.008
|
[48] |
Xu X, So JS, Park JG, et al. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP[J]. Semin Liver Dis, 2013, 33(4): 301-311. doi: 10.1055/s-0033-1358523
|
[49] |
Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate[J]. Nature, 2017, 551(7678): 115-118. doi: 10.1038/nature24057
|