• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
QIU Jiwan, KONG Yong, CHEN Wei, et al. Generation and characterization of humanized monoclonal antibody against human IFNAR1[J]. J China Pharm Univ, 2024, 55(3): 404 − 411. DOI: 10.11665/j.issn.1000-5048.2024031401
Citation: QIU Jiwan, KONG Yong, CHEN Wei, et al. Generation and characterization of humanized monoclonal antibody against human IFNAR1[J]. J China Pharm Univ, 2024, 55(3): 404 − 411. DOI: 10.11665/j.issn.1000-5048.2024031401

Generation and characterization of humanized monoclonal antibody against human IFNAR1

More Information
  • Received Date: March 13, 2024
  • Available Online: June 24, 2024
  • Type I interferons play an important role in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Monoclonal antibody shows therapeutic potential by blocking the signaling pathway. This study used recombinant human subunit 1 of the type I interferon receptor (IFNAR1) protein to immunize New Zealand white rabbits, and applied B cell cloning technology to screen and obtain rabbit parental antibodies. After humanization modification, QX006N was obtained. In vitro biological studies showed that QX006N could specifically bind to human IFNAR1 with an affinity of 108 pmol/L, and neutralize the type I interferon signaling pathway and this pathway mediated biological effects. This study provides a solid foundation for the development of antibody drugs targeting the type I interferon signaling pathway for the treatment of SLE.

  • [1]
    Ramaswamy M, Tummala R, Streicher K, et al. The pathogenesis, molecular mechanisms, and therapeutic potential of the interferon pathway in systemic lupus erythematosus and other autoimmune diseases[J]. Int J Mol Sci, 2021, 22(20): 11286. doi: 10.3390/ijms222011286
    [2]
    Moll HP, Maier T, Zommer A, et al. The differential activity of interferon-α subtypes is consistent among distinct target genes and cell types[J]. Cytokine, 2011, 53(1): 52-59. doi: 10.1016/j.cyto.2010.09.006
    [3]
    Peng L, Oganesyan V, Wu H, et al. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-α receptor 1 antibody[J]. MAbs, 2015, 7(2): 428-439. doi: 10.1080/19420862.2015.1007810
    [4]
    González-Navajas JM, Lee J, David M, et al. Immunomodulatory functions of type I interferons[J]. Nat Rev Immunol, 2012, 12(2): 125-135. doi: 10.1038/nri3133
    [5]
    Jiang J, Zhao M, Chang C, et al. Type I interferons in the pathogenesis and treatment of autoimmune diseases[J]. Clin Rev Allergy Immunol, 2020, 59(2): 248-272. doi: 10.1007/s12016-020-08798-2
    [6]
    Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease[J]. Lupus Sci Med, 2019, 6(1): e000270. doi: 10.1136/lupus-2018-000270
    [7]
    Crow MK, Olferiev M, Kirou KA. Type I interferons in autoimmune disease[J]. Annu Rev Pathol, 2019, 14: 369-393. doi: 10.1146/annurev-pathol-020117-043952
    [8]
    Kalunian KC, Merrill JT, Maciuca R, et al. A Phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE)[J]. Ann Rheum Dis, 2016, 75(1): 196-202. doi: 10.1136/annrheumdis-2014-206090
    [9]
    Anderson E, Furie R. Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations[J]. Immunotherapy, 2020, 12(5): 275-286. doi: 10.2217/imt-2020-0017
    [10]
    Khamashta M, Merrill JT, Werth VP, et al. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study[J]. Ann Rheum Dis, 2016, 75(11): 1909-1916. doi: 10.1136/annrheumdis-2015-208562
    [11]
    Kaplon H, Chenoweth A, Crescioli S, et al. Antibodies to watch in 2022[J]. MAbs, 2022, 14(1): 2014296. doi: 10.1080/19420862.2021.2014296
    [12]
    Deeks ED. Anifrolumab: first approval[J]. Drugs, 2021, 81(15): 1795-1802. doi: 10.1007/s40265-021-01604-z
    [13]
    Piehler J, Thomas C, Garcia KC, et al. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation[J]. Immunol Rev, 2012, 250(1): 317-334. doi: 10.1111/imr.12001
    [14]
    Weber J, Peng HY, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies[J]. Exp Mol Med, 2017, 49(3): e305. doi: 10.1038/emm.2017.23
    [15]
    Markham A. Brolucizumab: first approval[J]. Drugs, 2019, 79(18): 1997-2000. doi: 10.1007/s40265-019-01231-9
    [16]
    Dhillon S. Eptinezumab: first approval[J]. Drugs, 2020, 80(7): 733-739. doi: 10.1007/s40265-020-01300-4
  • Related Articles

    [1]ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201
    [2]HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101
    [3]ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904
    [4]CHEN Baiyu, LYU Lunan, XU Xiaodi, ZHANG Ying, LI Wei, FU Wei. Reflections on improving drug success rates with AIDD and CADD[J]. Journal of China Pharmaceutical University, 2024, 55(3): 284-294. DOI: 10.11665/j.issn.1000-5048.2024011302
    [5]PU Chengtao, GU Lingqian, CHEN Xingye, ZHANG Yanmin. Prediction of human intestinal absorption properties based on artificial intelligence[J]. Journal of China Pharmaceutical University, 2023, 54(3): 355-362. DOI: 10.11665/j.issn.1000-5048.2023032102
    [6]XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901
    [7]GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201
    [8]YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003
    [9]WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102
    [10]YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304

Catalog

    Article views (60) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return