• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LUO Xuelian, WU Chengsheng, ZHA Cheng, et al. Research progress and prospects of implantable drug delivery systems for postoperative tumor therapy[J]. J China Pharm Univ, 2024, 55(4): 538 − 547. DOI: 10.11665/j.issn.1000-5048.2024040901
Citation: LUO Xuelian, WU Chengsheng, ZHA Cheng, et al. Research progress and prospects of implantable drug delivery systems for postoperative tumor therapy[J]. J China Pharm Univ, 2024, 55(4): 538 − 547. DOI: 10.11665/j.issn.1000-5048.2024040901

Research progress and prospects of implantable drug delivery systems for postoperative tumor therapy

Funds: This study was supported by the Key Project of Anhui Provincial Natural Science Foundation (No. KJ2021A138)
More Information
  • Received Date: April 08, 2024
  • Implantable drug delivery systems, as an emerging therapeutic approach, markedly amplify drug efficacy while mitigating drug toxicity and adverse effects, presenting an innovative avenue for postoperative tumor management. This review delineates pivotal triggers for postoperative tumor recurrence and their respective treatment modalities. Moreover, it comprehensively delves into recent strides in research and development of implantable drug delivery systems following anti-tumor surgery, encompassing implantable such drug delivery platforms as casting implants, electrospinning implants and hydrogel implants. The evolution of anti-tumor postoperative implantable drug delivery systems signifies a promising realm of research, poised to furnish more effective, tailored treatment modalities for cancer patients, heralding a beacon of fresh prospects in their rehabilitation.

  • [1]
    Cortes J, Perez-García JM, Llombart-Cussac A, et al. Enhancing global access to cancer medicines[J]. CA Cancer J Clin, 2020, 70(2): 105-124. doi: 10.3322/caac.21597
    [2]
    Sullivan R, Peppercorn J, Sikora K, et al. Delivering affordable cancer care in high-income countries[J]. Lancet Oncol, 2011, 12(10): 933-980. doi: 10.1016/S1470-2045(11)70141-3
    [3]
    Demicheli R, Retsky MW, Hrushesky WJM, et al. The effects of surgery on tumor growth: a century of investigations[J]. Ann Oncol, 2008, 19(11): 1821-1828. doi: 10.1093/annonc/mdn386
    [4]
    Ceelen W, Pattyn P, Mareel M. Surgery, wound healing, and metastasis: recent insights and clinical implications[J]. Crit Rev Oncol Hematol, 2014, 89(1): 16-26. doi: 10.1016/j.critrevonc.2013.07.008
    [5]
    Tang F, Tie Y, Tu CQ, et al. Surgical trauma-induced immunosuppression in cancer: recent advances and the potential therapies[J]. Clin Transl Med, 2020, 10(1): 199-223. doi: 10.1002/ctm2.24
    [6]
    Gelderblom H, Verweij J, Nooter K, et al. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation[J]. Eur J Cancer, 2001, 37(13): 1590-1598. doi: 10.1016/S0959-8049(01)00171-X
    [7]
    Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nat Rev Mater, 2016, 1(5): 16014. doi: 10.1038/natrevmats.2016.14
    [8]
    Stein WD, Bates SE, Fojo T. Intractable cancers: the many faces of multidrug resistance and the many targets it presents for therapeutic attack[J]. Curr Drug Targets, 2004, 5(4): 333-346. doi: 10.2174/1389450043345489
    [9]
    Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers[J]. J Control Release, 2012, 159(1): 14-26. doi: 10.1016/j.jconrel.2011.11.031
    [10]
    Ashby LS, Smith KA, Stea B. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review[J]. World J Surg Oncol, 2016, 14(1): 225. doi: 10.1186/s12957-016-0975-5
    [11]
    Grosskopf AK, Labanieh L, Klysz DD, et al. Delivery of CAR-T cells in a transient injectable stimulatory hydrogel niche improves treatment of solid tumors[J]. Sci Adv, 2022, 8(14): eabn8264. doi: 10.1126/sciadv.abn8264
    [12]
    Li Y, Yuan RT, Luo Y, et al. A hierarchical structured fiber device remodeling the acidic tumor microenvironment for enhanced cancer immunotherapy[J]. Adv Mater, 2023, 35(21): e2300216. doi: 10.1002/adma.202300216
    [13]
    Chen Q, Wang C, Zhang XD, et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment[J]. Nat Nanotechnol, 2019, 14(1): 89-97.
    [14]
    Wang SG, Chen Y, Li X, et al. Injectable 2D MoS2-integrated drug delivering implant for highly efficient NIR-triggered synergistic tumor hyperthermia[J]. Adv Mater, 2015, 27(44): 7117-7122. doi: 10.1002/adma.201503869
    [15]
    Reza MS, Quadir MA, Haider SS. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery[J]. J Pharm Pharm Sci, 2003, 6(2): 282-291.
    [16]
    Sun M, Wang M, Chen MW, et al. A tissue-engineered therapeutic device inhibits tumor growth in vitro and in vivo[J]. Acta Biomater, 2015, 18: 21-29. doi: 10.1016/j.actbio.2015.02.004
    [17]
    Seib FP, Kaplan DL. Doxorubicin-loaded silk films: drug-silk interactions and in vivo performance in human orthotopic breast cancer[J]. Biomaterials, 2012, 33(33): 8442-8450. doi: 10.1016/j.biomaterials.2012.08.004
    [18]
    Peng H, Yang HW, Song LW, et al. Sustained delivery of siRNA/PEI complex from in situ forming hydrogels potently inhibits the proliferation of gastric cancer[J]. J Exp Clin Cancer Res, 2016, 35: 57. doi: 10.1186/s13046-016-0334-y
    [19]
    Kuang GZ, Zhang ZY, Liu S, et al. Biphasic drug release from electrospun polyblend nanofibers for optimized local cancer treatment[J]. Biomater Sci, 2018, 6(2): 324-331. doi: 10.1039/C7BM01018D
    [20]
    Cao D, Guo W, Cai CY, et al. Unified therapeutic-prophylactic vaccine demonstrated with a postoperative filler gel to prevent tumor recurrence and metastasis[J]. Adv Funct Materials, 2022, 32(40): 2206084. doi: 10.1002/adfm.202206084
    [21]
    Gupta D, Singh AK, Dravid A, et al. Multiscale porosity in compressible cryogenically 3D printed gels for bone tissue engineering[J]. ACS Appl Mater Interfaces, 2019, 11(22): 20437-20452. doi: 10.1021/acsami.9b05460
    [22]
    Phuengkham H, Song C, Lim YT. A designer scaffold with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy[J]. Adv Mater, 2019, 31(42): e1903242. doi: 10.1002/adma.201903242
    [23]
    Giese A, Bjerkvig R, Berens ME, et al. Cost of migration: invasion of malignant gliomas and implications for treatment[J]. J Clin Oncol, 2003, 21(8): 1624-1636. doi: 10.1200/JCO.2003.05.063
    [24]
    Nijkamp MW, Hoogwater FJ, Govaert KM, et al. A role for CD95 signaling in ischemia/reperfusion-induced invasion and outgrowth of colorectal micrometastases in mouse liver[J]. J Surg Oncol, 2011, 104(2): 198-204. doi: 10.1002/jso.21915
    [25]
    Buljubasic N, Rusch NJ, Marijic J, et al. Effects of halothane and isoflurane on calcium and potassium channel currents in canine coronary arterial cells[J]. Anesthesiology, 1992, 76(6): 990-998. doi: 10.1097/00000542-199206000-00020
    [26]
    Hamard L, Ratel D, Selek L, et al. The brain tissue response to surgical injury and its possible contribution to glioma recurrence[J]. J Neurooncol, 2016, 128(1): 1-8. doi: 10.1007/s11060-016-2096-y
    [27]
    Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: mechanisms, signaling, and translation[J]. Sci Transl Med, 2014, 6(265): 265sr6.
    [28]
    Li CX, Xu XF, Wei SH, et al. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer[J]. J Immunother Cancer, 2021, 9(1): e001341. doi: 10.1136/jitc-2020-001341
    [29]
    Liang Y, Tan YZ, Guan B, et al. Single-cell atlases link macrophages and CD8+ T-cell subpopulations to disease progression and immunotherapy response in urothelial carcinoma[J]. Theranostics, 2022, 12(18): 7745-7759. doi: 10.7150/thno.77281
    [30]
    Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321. doi: 10.1038/nature07039
    [31]
    Chen ZW, Zhang PD, Xu Y, et al. Surgical stress and cancer progression: the twisted tango[J]. Mol Cancer, 2019, 18(1): 132. doi: 10.1186/s12943-019-1058-3
    [32]
    Zhang YW, Jiang C. Postoperative cancer treatments: In-situ delivery system designed on demand[J]. J Control Release, 2021, 330: 554-564. doi: 10.1016/j.jconrel.2020.12.038
    [33]
    Fleming AB, Saltzman WM. Pharmacokinetics of the carmustine implant[J]. Clin Pharmacokinet, 2002, 41(6): 403-419. doi: 10.2165/00003088-200241060-00002
    [34]
    Mathios D, Kim JE, Mangraviti A, et al. Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM[J]. Sci Transl Med, 2016, 8(370): 370ra180.
    [35]
    Lei L, Huang D, Gao HL, et al. Hydrogel-guided strategies to stimulate an effective immune response for vaccine-based cancer immunotherapy[J]. Sci Adv, 2022, 8(47): eadc8738. doi: 10.1126/sciadv.adc8738
    [36]
    Correa S, Grosskopf AK, Lopez Hernandez H, et al. Translational applications of hydrogels[J]. Chem Rev, 2021, 121(18): 11385-11457. doi: 10.1021/acs.chemrev.0c01177
    [37]
    Kong B, Liu R, Guo JH, et al. Tailoring micro/nano-fibers for biomedical applications[J]. Bioact Mater, 2023, 19: 328-347.
    [38]
    Hinderer S, Layland SL, Schenke-Layland K. ECM and ECM-like materials - Biomaterials for applications in regenerative medicine and cancer therapy[J]. Adv Drug Deliv Rev, 2016, 97: 260-269. doi: 10.1016/j.addr.2015.11.019
    [39]
    Wu LH, Li JH, Wang YQ, et al. Engineered hierarchical microdevices enable pre-programmed controlled release for postsurgical and unresectable cancer treatment[J]. Adv Mater, 2023, 35(51): e2305529. doi: 10.1002/adma.202305529
    [40]
    Qian JQ, Su LC, He JJ, et al. Dual-modal imaging and synergistic spinal tumor therapy enabled by hierarchical-structured nanofibers with cascade release and postoperative anti-adhesion[J]. ACS Nano, 2022, 16(10): 16880-16897. doi: 10.1021/acsnano.2c06848
    [41]
    Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: a review[J]. J Control Release, 2021, 334: 463-484. doi: 10.1016/j.jconrel.2021.03.033
    [42]
    Zhou JF, Chen YN, Liu Y, et al. Electrospun medicated gelatin/polycaprolactone Janus fibers for photothermal-chem combined therapy of liver cancer[J]. Int J Biol Macromol, 2024, 269 (Pt 1): 132113.
    [43]
    Schön SN, Skalicky N, Sharma N, et al. 3D-printer-assisted patient-specific polymethyl methacrylate cranioplasty: a case series of 16 consecutive patients[J]. World Neurosurg, 2021, 148: e356-e362. doi: 10.1016/j.wneu.2020.12.138
    [44]
    Valverde I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions[J]. Rev Esp Cardiol, 2017, 70(4): 282-291. doi: 10.1016/j.recesp.2016.09.043
    [45]
    Long J, Zhang W, Chen YQ, et al. Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma[J]. Biomaterials, 2021, 275: 120950. doi: 10.1016/j.biomaterials.2021.120950
    [46]
    Joo SH, Kim J, Hong J, et al. Dissolvable self-locking microneedle patches integrated with immunomodulators for cancer immunotherapy[J]. Adv Mater, 2023, 35(10): e2209966. doi: 10.1002/adma.202209966
    [47]
    Shafiee A, Atala A. Printing technologies for medical applications[J]. Trends Mol Med, 2016, 22(3): 254-265. doi: 10.1016/j.molmed.2016.01.003
    [48]
    Ranganath SH, Wang CH. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma[J]. Biomaterials, 2008, 29(20): 2996-3003. doi: 10.1016/j.biomaterials.2008.04.002
    [49]
    Bregy A, Shah AH, Diaz MV, et al. The role of Gliadel wafers in the treatment of high-grade gliomas[J]. Expert Rev Anticancer Ther, 2013, 13(12): 1453-1461. doi: 10.1586/14737140.2013.840090
    [50]
    Bar-Kochba E, Scimone MT, Estrada JB, et al. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury[J]. Sci Rep, 2016, 6: 30550. doi: 10.1038/srep30550
    [51]
    Zhang DH, Chen Q, Bi YF, et al. Bio-inspired poly-DL-serine materials resist the foreign-body response[J]. Nat Commun, 2021, 12(1): 5327. doi: 10.1038/s41467-021-25581-9
    [52]
    Wang DH, Xing S, Peng F, et al. Microenvironment-responsive electrocution of tumor and bacteria by implants modified with degenerate semiconductor film[J]. Bioact Mater, 2023, 20: 472-488.
    [53]
    Schiapparelli P, Zhang PC, Lara-Velazquez M, et al. Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model[J]. J Control Release, 2020, 319: 311-321. doi: 10.1016/j.jconrel.2020.01.003
    [54]
    Elstad NL, Fowers KD. OncoGel (ReGel/paclitaxel): clinical applications for a novel paclitaxel delivery system[J]. Adv Drug Deliv Rev, 2009, 61(10): 785-794. doi: 10.1016/j.addr.2009.04.010
    [55]
    Gobin AM, Lee MH, Halas NJ, et al. Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy[J]. Nano Lett, 2007, 7(7): 1929-1934. doi: 10.1021/nl070610y
    [56]
    Vines JB, Yoon JH, Ryu NE, et al. Gold nanoparticles for photothermal cancer therapy[J]. Front Chem, 2019, 7: 167. doi: 10.3389/fchem.2019.00167
    [57]
    Shao JD, Ruan CS, Xie HH, et al. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer[J]. Adv Sci, 2018, 5(5): 1700848. doi: 10.1002/advs.201700848
    [58]
    Wu F, Ter Haar G, Chen WR. High-intensity focused ultrasound ablation of breast cancer[J]. Expert Rev Anticancer Ther, 2007, 7(6): 823-831. doi: 10.1586/14737140.7.6.823
    [59]
    Reddy D, Peters M, Shah TT, et al. Cancer control outcomes following focal therapy using high-intensity focused ultrasound in 1379 men with nonmetastatic prostate cancer: a multi-institute 15-year experience[J]. Eur Urol, 2022, 81(4): 407-413. doi: 10.1016/j.eururo.2022.01.005
    [60]
    Yang YL, Hu XP, Liu YX, et al. An implantable ultrasound-powered device for the treatment of brain cancer using electromagnetic fields[J]. Sci Adv, 2022, 8(29): eabm5023. doi: 10.1126/sciadv.abm5023
    [61]
    Quail DF, Joyce JA. The microenvironmental landscape of brain tumors[J]. Cancer Cell, 2017, 31(3): 326-341. doi: 10.1016/j.ccell.2017.02.009
    [62]
    Lim M, Xia YX, Bettegowda C, et al. Current state of immunotherapy for glioblastoma[J]. Nat Rev Clin Oncol, 2018, 15(7): 422-442. doi: 10.1038/s41571-018-0003-5
    [63]
    Dong SY, Liu X, Bi Y, et al. Adaptive design of mRNA-loaded extracellular vesicles for targeted immunotherapy of cancer[J]. Nat Commun, 2023, 14(1): 6610. doi: 10.1038/s41467-023-42365-5
    [64]
    Dietz MV, Quintelier KLA, van Kooten JP, et al. Adjuvant dendritic cell-based immunotherapy after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in patients with malignant peritoneal mesothelioma: a phase II clinical trial[J]. J Immunother Cancer, 2023, 11(8): e007070. doi: 10.1136/jitc-2023-007070
    [65]
    Lau SP, Klaase L, Vink M, et al. Autologous dendritic cells pulsed with allogeneic tumour cell lysate induce tumour-reactive T-cell responses in patients with pancreatic cancer: a phase I study[J]. Eur J Cancer, 2022, 169: 20-31. doi: 10.1016/j.ejca.2022.03.015
    [66]
    Han X, Shen SF, Fan Q, et al. Red blood cell-derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy[J]. Sci Adv, 2019, 5(10): eaaw6870. doi: 10.1126/sciadv.aaw6870
    [67]
    Zhang YB, Hou XC, Du S, et al. Close the cancer-immunity cycle by integrating lipid nanoparticle-mRNA formulations and dendritic cell therapy[J]. Nat Nanotechnol, 2023, 18(11): 1364-1374. doi: 10.1038/s41565-023-01453-9
    [68]
    DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy[J]. Nat Rev Immunol, 2019, 19(6): 369-382. doi: 10.1038/s41577-019-0127-6
    [69]
    Xiang XN, Wang JG, Lu D, et al. Targeting tumor-associated macrophages to synergize tumor immunotherapy[J]. Signal Transduct Target Ther, 2021, 6(1): 75. doi: 10.1038/s41392-021-00484-9
    [70]
    Mantovani A, Allavena P, Marchesi F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21(11): 799-820. doi: 10.1038/s41573-022-00520-5
    [71]
    Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer[J]. Trends Immunol, 2019, 40(4): 310-327. doi: 10.1016/j.it.2019.02.003
    [72]
    Gao J, Liang YZ, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy[J]. Front Immunol, 2022, 13: 888713. doi: 10.3389/fimmu.2022.888713
    [73]
    Zhang YM, Feng ZJ, Liu JJ, et al. Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance[J]. Bioact Mater, 2022, 16: 359-371.
    [74]
    Cassetta L, Pollard JW. A timeline of tumour-associated macrophage biology[J]. Nat Rev Cancer, 2023, 23(4): 238-257. doi: 10.1038/s41568-022-00547-1
    [75]
    Wang TT, Wang DG, Yu HJ, et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors[J]. Nat Commun, 2018, 9(1): 1532. doi: 10.1038/s41467-018-03915-4

Catalog

    Article views (646) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return