Citation: | SHUAI Yubing, WANG Qiudan, HE Tianyu, et al. Mitofusin 2: an emerging drug target[J]. J China Pharm Univ, 2025, 56(1): 1 − 9. DOI: 10.11665/j.issn.1000-5048.2024041001 |
Mitofusin 2 (MFN2) residing on the outer mitochondrial membrane is a pivotal factor participating in mitochondrial fusion and maintaining mitochondrial morphology. Due to its multifaceted cellular functions, MFN2 is implicated in the pathogenesis of diverse maladies, notably type 2 Charcot-Marie-Tooth disease, which has catalyzed a surge in pharmaceutical endeavors directed towards MFN2. This article reviews the function of MFN2 and its role in a variety of diseases, outlines the current status of drug discovery against MFN2, and summarizes potential drug molecules currently in preclinical research, aiming to provide some reference for the research and development of drugs and therapies targeting MFN2.
[1] |
Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism[J]. Mol Cell, 2016, 61(5): 683-694. doi: 10.1016/j.molcel.2016.02.022
|
[2] |
Filadi R, Pendin D, Pizzo P. Mitofusin 2: from functions to disease[J]. Cell Death Dis, 2018, 9(3): 330. doi: 10.1038/s41419-017-0023-6
|
[3] |
Record CJ, Pipis M, Skorupinska M, et al. Whole genome sequencing increases the diagnostic rate in Charcot-Marie-Tooth disease[J]. Brain, 2024, 147(9): 3144-3156. doi: 10.1093/brain/awae064
|
[4] |
Mancini G, Pirruccio K, Yang XY, et al. Mitofusin 2 in mature adipocytes controls adiposity and body weight[J]. Cell Rep, 2019, 27(2): 648. doi: 10.1016/j.celrep.2019.03.065
|
[5] |
Tang YJ, Jia YT, Fan LW, et al. MFN2 prevents neointimal hyperplasia in vein grafts via destabilizing PFK1[J]. Circ Res, 2022, 130(11): e26-e43.
|
[6] |
Hernández-Alvarez MI, Sebastián D, Vives S, et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease[J]. Cell, 2019, 177(4): 881-895. e17.
|
[7] |
Che Y, Xu WF, Ding CJ, et al. Bile acids target mitofusin 2 to differentially regulate innate immunity in physiological versus cholestatic conditions[J]. Cell Rep, 2023, 42(1): 112011. doi: 10.1016/j.celrep.2023.112011
|
[8] |
Ramaiah P, Patra I, Abbas A, et al. Mitofusin-2 in cancer: friend or foe[J]? Arch Biochem Biophys, 2022, 730: 109395. doi: 10.1016/j.abb.2022.109395
|
[9] |
Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease[J]. Biol Rev Camb Philos Soc, 2018, 93(2): 933-949. doi: 10.1111/brv.12378
|
[10] |
Yuan XW, Nan YM. Research progress of structure, function and mechanism of action of mitofusin 2 in liver diseases[J]. Chin Gen Pract (中国全科医学), 2023, 26(30): 3841-3846.
|
[11] |
Xu X, Wang XN, Chen QH, et al. Sp1 promotes tumour progression by remodelling the mitochondrial network in cervical cancer[J]. J Transl Med, 2023, 21(1): 307. doi: 10.1186/s12967-023-04141-3
|
[12] |
Zeng KW, Wang JK, Wang LC, et al. Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity[J]. Signal Transduct Target Ther, 2021, 6(1): 71. doi: 10.1038/s41392-020-00447-6
|
[13] |
Fang XD, He JK, Chen YX, et al. MiR-449a downregulation alleviates the progression of renal interstitial fibrosis by mediating the KLF4/MFN2 axis[J]. Int Urol Nephrol, 2023, 55(7): 1837-1846. doi: 10.1007/s11255-023-03503-6
|
[14] |
Bucha S, Mukhopadhyay D, Bhattacharyya NP. E2F1 activates MFN2 expression by binding to the promoter and decreases mitochondrial fission and mitophagy in HeLa cells[J]. FEBS J, 2019, 286(22): 4525-4541. doi: 10.1111/febs.14980
|
[15] |
Barker SJ, Raju RM, Milman NEP, et al. MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration[J]. Sci Transl Med, 2021, 13(618): eabd7695. doi: 10.1126/scitranslmed.abd7695
|
[16] |
Ding MG, Shi R, Fu F, et al. Paeonol protects against doxorubicin-induced cardiotoxicity by promoting Mfn2-mediated mitochondrial fusion through activating the PKCε-Stat3 pathway[J]. J Adv Res, 2023, 47: 151-162. doi: 10.1016/j.jare.2022.07.002
|
[17] |
Zhang K, Zhao HF, Sheng YR, et al. Zeb1 sustains hematopoietic stem cell functions by suppressing mitofusin-2-mediated mitochondrial fusion[J]. Cell Death Dis, 2022, 13(8): 735. doi: 10.1038/s41419-022-05194-w
|
[18] |
Xu L, Hao HY, Hao YJ, et al. Aberrant MFN2 transcription facilitates homocysteine-induced VSMCs proliferation via the increased binding of c-Myc to DNMT1 in atherosclerosis[J]. J Cell Mol Med, 2019, 23(7): 4611-4626. doi: 10.1111/jcmm.14341
|
[19] |
Ding MG, Shi R, Cheng SL, et al. Mfn2-mediated mitochondrial fusion alleviates doxorubicin-induced cardiotoxicity with enhancing its anticancer activity through metabolic switch[J]. Redox Biol, 2022, 52: 102311. doi: 10.1016/j.redox.2022.102311
|
[20] |
Chen Y, Dorn GW 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria[J]. Science, 2013, 340(6131): 471-475. doi: 10.1126/science.1231031
|
[21] |
Wang HN, Yi XL, Guo S, et al. The XBP1‒MARCH5‒MFN2 axis confers endoplasmic reticulum stress resistance by coordinating mitochondrial fission and mitophagy in melanoma[J]. J Invest Dermatol, 2021, 141(12): 2932-2943. e12.
|
[22] |
Wang YH, Wang YW, Li FD, et al. Spermine protects cardiomyocytes from high glucose-induced energy disturbance by targeting the CaSR-gp78-ubiquitin proteasome system[J]. Cardiovasc Drugs Ther, 2021, 35(1): 73-85. doi: 10.1007/s10557-020-07064-z
|
[23] |
Franco A, Kitsis RN, Fleischer JA, et al. Correcting mitochondrial fusion by manipulating mitofusin conformations[J]. Nature, 2016, 540(7631): 74-79. doi: 10.1038/nature20156
|
[24] |
Rocha AG, Franco A, Krezel AM, et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A[J]. Science, 2018, 360(6386): 336-341. doi: 10.1126/science.aao1785
|
[25] |
Naón D, Hernández-Alvarez MI, Shinjo S, et al. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria[J]. Science, 2023, 380(6651): eadh9351. doi: 10.1126/science.adh9351
|
[26] |
Yepuri G, Ramirez LM, Theophall GG, et al. DIAPH1-MFN2 interaction regulates mitochondria-SR/ER contact and modulates ischemic/hypoxic stress[J]. Nat Commun, 2023, 14(1): 6900. doi: 10.1038/s41467-023-42521-x
|
[27] |
Zhou XF, Jiang YQ, Wang YW, et al. Endothelial FIS1 DeSUMOylation protects against hypoxic pulmonary hypertension[J]. Circ Res, 2023, 133(6): 508-531. doi: 10.1161/CIRCRESAHA.122.321200
|
[28] |
Yang JF, Xing XD, Luo L, et al. Mitochondria-ER contact mediated by MFN2-SERCA2 interaction supports CD8+ T cell metabolic fitness and function in tumors[J]. Sci Immunol, 2023, 8(87): eabq2424. doi: 10.1126/sciimmunol.abq2424
|
[29] |
Li T, Han JB, Jia LJ, et al. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation[J]. Protein Cell, 2019, 10(8): 583-594. doi: 10.1007/s13238-019-0618-z
|
[30] |
Yao CH, Wang RC, Wang YH, et al. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation[J]. eLife, 2019, 8: e41351. doi: 10.7554/eLife.41351
|
[31] |
Scheffer DDL, Garcia AA, Lee L, et al. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: challenges and therapeutic opportunities[J]. Antioxid Redox Signal, 2022, 36(13/14/15): 844-863.
|
[32] |
Schneeberger M, Dietrich MO, Sebastián D, et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance[J]. Cell, 2013, 155(1): 172-187. doi: 10.1016/j.cell.2013.09.003
|
[33] |
Sebastián D, Hernández-Alvarez MI, Segalés J, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis[J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5523-5528. doi: 10.1073/pnas.1108220109
|
[34] |
Zhang R, Yang AL, Zhang L, et al. MFN2 deficiency promotes cardiac response to hypobaric hypoxia by reprogramming cardiomyocyte metabolism[J]. Acta Physiol, 2023, 239(1): e14018. doi: 10.1111/apha.14018
|
[35] |
Gottschalk B, Koshenov Z, Bachkoenig OA, et al. MFN2 mediates ER-mitochondrial coupling during ER stress through specialized stable contact sites[J]. Front Cell Dev Biol, 2022, 10: 918691. doi: 10.3389/fcell.2022.918691
|
[36] |
Cao Y, Chen ZW, Hu JJ, et al. Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway[J]. Front Cell Dev Biol, 2021, 9: 769213. doi: 10.3389/fcell.2021.769213
|
[37] |
Chen YQ, Li S, Yin M, et al. Isorhapontigenin attenuates cardiac microvascular injury in diabetes via the inhibition of mitochondria-associated ferroptosis through PRDX2-MFN2-ACSL4 pathways[J]. Diabetes, 2023, 72(3): 389-404. doi: 10.2337/db22-0553
|
[38] |
Deng HD, Zhu S, Zhu L, et al. Mfn2 is responsible for inhibition of the RIG-I/IRF7 pathway and activation of NLRP3 inflammasome in Seneca Valley virus-infected PK-15 cells to promote viral replication[J]. Front Immunol, 2022, 13: 955671. doi: 10.3389/fimmu.2022.955671
|
[39] |
Tur J, Pereira-Lopes S, Vico T, et al. Mitofusin 2 in macrophages links mitochondrial ROS production, cytokine release, phagocytosis, autophagy, and bactericidal activity[J]. Cell Rep, 2020, 32(8): 108079. doi: 10.1016/j.celrep.2020.108079
|
[40] |
Zhou YQ, Carmona S, Muhammad AKMG, et al. Restoring mitofusin balance prevents axonal degeneration in a Charcot-Marie-Tooth type 2A model[J]. J Clin Invest, 2021, 131(2): e147307. doi: 10.1172/JCI147307
|
[41] |
Das H, Sarkar S, Paidi RK, et al. Subtle genomic DNA damage induces intraneuronal production of amyloid-β (1-42) by increasing β-secretase activity[J]. FASEB J, 2021, 35(5): e21569.
|
[42] |
Krishna G, Santhoshkumar R, Sivakumar PT, et al. Pathological (dis)similarities in neuronal exosome-derived synaptic and organellar marker levels between Alzheimer’s disease and frontotemporal dementia[J]. J Alzheimers Dis, 2023, 94(s1): S387-S397. doi: 10.3233/JAD-220829
|
[43] |
Singh K, Sethi P, Datta S, et al. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases[J]. Ageing Res Rev, 2024, 98: 102321. doi: 10.1016/j.arr.2024.102321
|
[44] |
Panes JD, Wendt A, Ramirez-Molina O, et al. Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure[J]. Neural Regen Res, 2022, 17(2): 237-245. doi: 10.4103/1673-5374.317957
|
[45] |
Wang LW, Gao J, Liu JY, et al. Mitofusin 2 regulates axonal transport of calpastatin to prevent neuromuscular synaptic elimination in skeletal muscles[J]. Cell Metab, 2018, 28(3): 400-414. e8.
|
[46] |
Boutant M, Kulkarni SS, Joffraud M, et al. Mfn2 is critical for brown adipose tissue thermogenic function[J]. EMBO J, 2017, 36(11): 1543-1558. doi: 10.15252/embj.201694914
|
[47] |
Guberman M, Dhingra R, Cross J, et al. IKKβ stabilizes Mitofusin 2 and suppresses doxorubicin cardiomyopathy[J]. Cardiovasc Res, 2024, 120(2): 164-173. doi: 10.1093/cvr/cvad145
|
[48] |
Xie SY, Liu SQ, Zhang T, et al. USP28 serves as a key suppressor of mitochondrial morphofunctional defects and cardiac dysfunction in the diabetic heart[J]. Circulation, 2024, 149(9): 684-706. doi: 10.1161/CIRCULATIONAHA.123.065603
|
[49] |
Chen H, Zhang H, Li AM, et al. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats[J]. Redox Biol, 2024, 70: 103062. doi: 10.1016/j.redox.2024.103062
|
[50] |
Burtscher M, Burtscher J. MFN2: Shaping mitochondria and cardiac adaptations to hypoxia[J]. Acta Physiol, 2023, 239(2): e14026. doi: 10.1111/apha.14026
|
[51] |
Franco A, Li JJ, Kelly DP, et al. A human mitofusin 2 mutation can cause mitophagic cardiomyopathy[J]. eLife, 2023, 12: e84235. doi: 10.7554/eLife.84235
|
[52] |
Zhang Y, Li JJ, Xu R, et al. Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts[J]. Redox Biol, 2023, 68: 102944. doi: 10.1016/j.redox.2023.102944
|
[53] |
Zhu HZ, Shan YQ, Ge K, et al. Specific overexpression of mitofusin-2 in hepatic stellate cells ameliorates liver fibrosis in mice model[J]. Hum Gene Ther, 2020, 31(1/2): 103-109.
|
[54] |
Xue R, Yang J, Jia L, et al. Mitofusin2, as a protective target in the liver, controls the balance of apoptosis and autophagy in acute-on-chronic liver failure[J]. Front Pharmacol, 2019, 10: 601. doi: 10.3389/fphar.2019.00601
|
[55] |
Schollmeier A, Basic M, Glitscher M, et al. The impact of HBx protein on mitochondrial dynamics and associated signaling pathways strongly depends on the hepatitis B virus genotype[J]. J Virol, 2024, 98(5): e0042424. doi: 10.1128/jvi.00424-24
|
[56] |
Natarajan A, Beena PM, Devnikar AV, et al. A systemic review on tuberculosis[J]. Indian J Tuberc, 2020, 67(3): 295-311. doi: 10.1016/j.ijtb.2020.02.005
|
[57] |
Lee J, Choi JA, Cho SN, et al. Mitofusin 2-deficiency suppresses Mycobacterium tuberculosis survival in macrophages[J]. Cells, 2019, 8(11): 1355. doi: 10.3390/cells8111355
|
[58] |
Cheng XF, Li YQ, Liu FL. Prognostic impact of mitofusin 2 expression in colon cancer[J]. Transl Cancer Res, 2022, 11(10): 3610-3619. doi: 10.21037/tcr-22-589
|
[59] |
Zhang B, Han DL, Yang LM, et al. The mitochondrial fusion-associated protein MFN2 can be used as a novel prognostic molecule for clear cell renal cell carcinoma[J]. BMC Cancer, 2023, 23(1): 986. doi: 10.1186/s12885-023-11419-8
|
[60] |
Dang XW, Zhang LH, Franco A, et al. Discovery of 6-phenylhexanamide derivatives as potent stereoselective mitofusin activators for the treatment of mitochondrial diseases[J]. J Med Chem, 2020, 63(13): 7033-7051. doi: 10.1021/acs.jmedchem.0c00366
|
[61] |
Franco A, Dang XW, Walton EK, et al. Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A[J]. eLife, 2020, 9: e61119. doi: 10.7554/eLife.61119
|
[62] |
Franco A, Dang XW, Zhang LH, et al. Mitochondrial dysfunction and pharmacodynamics of mitofusin activation in murine Charcot-Marie-tooth disease type 2A[J]. J Pharmacol Exp Ther, 2022, 383(2): 137-148. doi: 10.1124/jpet.122.001332
|
[63] |
Zacharioudakis E, Agianian B, Kumar Mv V, et al. Modulating mitofusins to control mitochondrial function and signaling[J]. Nat Commun, 2022, 13(1): 3775. doi: 10.1038/s41467-022-31324-1
|
[64] |
Dang XW, Williams SB, Devanathan S, et al. Pharmacophore-based design of phenyl-[hydroxycyclohexyl]cycloalkyl-carboxamide mitofusin activators with improved neuronal activity[J]. J Med Chem, 2021, 64(17): 12506-12524. doi: 10.1021/acs.jmedchem.1c00163
|