Citation: | YE Chenglian, CHEN Jincong, LIU Chenfu. Recent progress of enzymatic synthesis of flavonoid C-glycosides with C-glycosyltransferase[J]. J China Pharm Univ, 2024, 55(4): 463 − 471. DOI: 10.11665/j.issn.1000-5048.2024042901 |
C-Glycosylation is one of the modifications of plant secondary metabolites, which can increase the stability, bioavailability, water solubility and biological activities. Flavonoid C-glycosides, as one of the most important plant secondary metabolites, exhibit important biological activities in regulating plant growth and development, resisting pests and diseases, resisting ultraviolet radiation, and antibacterial etc. Generally, this kind of such compounds are biosynthesized by flavonoids reacting with UDP-Glucose and other nucleoside diphosphates catalyzed by C-glycosyltransferase (CGT). This paper reviews the literature reports on the biosynthesis of flavonoid C-glycosides catalyzed by CGT in recent years, and discusses three strategies for its biosynthesis from the perspectives of raw material flavonoids, flavonoid O-glycosides and flavonoid biosynthetic pathways. Among them, the direct or indirect synthesis of flavonoid C-glycosides using flavonoids as raw materials is the most common synthesis strategy, and the classification, plant origin and catalytic function of various CGTs reported recently were also summarized.
[1] |
Lam LPY, Wang LX, Lui ACW, et al. Flavonoids in major cereal grasses: distribution, functions, biosynthesis, and applications[J]. Phytochem Rev, 2023, 22(5): 1399-1438. doi: 10.1007/s11101-023-09873-0
|
[2] |
He M, Min JW, Kong WL, et al. A review on the pharmacological effects of vitexin and isovitexin[J]. Fitoterapia, 2016, 115: 74-85. doi: 10.1016/j.fitote.2016.09.011
|
[3] |
Ji Y, Li BZ, Qiao M, et al. Advances on the in vivo and in vitro glycosylations of flavonoids[J]. Appl Microbiol Biotechnol, 2020, 104(15): 6587-6600. doi: 10.1007/s00253-020-10667-z
|
[4] |
Liu CF. Recent advances on natural aryl-C-glycoside scaffolds: structure, bioactivities, and synthesis-a comprehensive review[J]. Molecules, 2022, 27(21): 7439. doi: 10.3390/molecules27217439
|
[5] |
Hao B, Caulfield JC, Hamilton ML, et al. The biosynthesis of allelopathic di-C-glycosylflavones from the roots of Desmodium incanum (G. Mey. ) DC[J]. Org Biomol Chem, 2015, 13(48): 11663-11673. doi: 10.1039/C5OB01926E
|
[6] |
Hamilton ML, Caulfield JC, Pickett JA, et al. C-glucosylflavonoid biosynthesis from 2-hydroxynaringenin by Desmodium uncinatum (Jacq. ) (fabaceae)[J]. Tetrahedron Lett, 2009, 50 (40): 5656-5659.
|
[7] |
Dai LH, Hu YM, Chen CC, et al. Flavonoid C-glycosyltransferases: function, evolutionary relationship, catalytic mechanism and protein engineering[J]. ChemBioEng Rev, 2021, 8(1): 15-26. doi: 10.1002/cben.202000009
|
[8] |
He XZ, Blount JW, Ge SJ, et al. A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata)[J]. Planta, 2011, 233(4): 843-855. doi: 10.1007/s00425-010-1344-1
|
[9] |
Mikl M, Dennig A, Nidetzky B. Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis[J]. J Biotechnol, 2020, 322: 74-78. doi: 10.1016/j.jbiotec.2020.06.023
|
[10] |
Sun XR, Xue XF, Wang XQ, et al. Natural variation of ZmCGT1 is responsible for isoorientin accumulation in maize silk[J]. Plant J, 2022, 109(1): 64-76. doi: 10.1111/tpj.15549
|
[11] |
Hirade Y, Kotoku N, Terasaka K, et al. Identification and functional analysis of 2-hydroxyflavanone C-glucosyltransferase in soybean (Glycine max)[J]. FEBS Lett, 2015, 589(15): 1778-1786. doi: 10.1016/j.febslet.2015.05.010
|
[12] |
Liu MZ, Wang DD, Li Y, et al. Crystal structures of the C-glycosyltransferase UGT708C1 from buckwheat provide insights into the mechanism of C-glycosylation[J]. Plant Cell, 2020, 32(9): 2917-2931. doi: 10.1105/tpc.20.00002
|
[13] |
Adolfo LM, Burks D, Rao XL, et al. Evaluation of pathways to the C-glycosyl isoflavone puerarin in roots of kudzu (Pueraria Montana Lobata)[J]. Plant Direct, 2022, 6(9): e442. doi: 10.1002/pld3.442
|
[14] |
Ito T, Fujimoto S, Suito F, et al. C-Glycosyltransferases catalyzing the formation of di-C-glucosyl flavonoids in citrus plants[J]. Plant J, 2017, 91(2): 187-198. doi: 10.1111/tpj.13555
|
[15] |
Chen DW, Sun LL, Chen RD, et al. Enzymatic Synthesis of Acylphloroglucinol 3-C-Glucosides from 2-O-Glucosides using a C-Glycosyltransferase from Mangifera indica[J]. Chem Eur J, 2016, 22(17): 5873-5877. doi: 10.1002/chem.201600411
|
[16] |
Wang ZL, Gao HM, Wang S, et al. Dissection of the general two-step di-C-glycosylation pathway for the biosynthesis of (iso)schaftosides in higher plants[J]. Proc Natl Acad Sci U S A, 2020, 117(48): 30816-30823. doi: 10.1073/pnas.2012745117
|
[17] |
Ren ZY, Ji XY, Jiao ZB, et al. Functional analysis of a novel C-glycosyltransferase in the orchid Dendrobium catenatum[J]. Hortic Res, 2020, 7: 111. doi: 10.1038/s41438-020-0330-4
|
[18] |
Shrestha A, Pandey RP, Dhakal D, et al. Biosynthesis of flavone C-glucosides in engineered Escherichia coli[J]. Appl Microbiol Biotechnol, 2018, 102(3): 1251-1267. doi: 10.1007/s00253-017-8694-6
|
[19] |
He JB, Zhao P, Hu ZM, et al. Molecular and structural characterization of a promiscuous C-glycosyltransferase from Trollius chinensis[J]. Angew Chem Int Ed, 2019, 58(33): 11513-11520. doi: 10.1002/anie.201905505
|
[20] |
Putkaradze N, Gala VD, Vaitkus D, et al. Sequence mining yields 18 phloretin C-glycosyltransferases from plants for the efficient biocatalytic synthesis of nothofagin and phloretin-di-C-glycoside[J]. Biotechnol J, 2023, 18(6): e2200609. doi: 10.1002/biot.202200609
|
[21] |
Dorjjugder N, Hatano M, Taguchi G. Production of flavonol and flavone 6-C-glucosides by bioconversion in Escherichia coli expressing a C-glucosyltransferase from wasabi (Eutrema japonicum)[J]. Biotechnol Lett, 2021, 43(9): 1913-1919. doi: 10.1007/s10529-021-03165-3
|
[22] |
Bao YO, Zhang M, Qiao X, et al. Functional characterization of a C-glycosyltransferase from Pueraria lobata with dual-substrate selectivity[J]. Chem Commun, 2022, 58(88): 12337-12340. doi: 10.1039/D2CC04279G
|
[23] |
Sasaki N, Nishizaki Y, Yamada E, et al. Identification of the glucosyltransferase that mediates direct flavone C-glucosylation in Gentiana triflora[J]. FEBS Lett, 2015, 589(1): 182-187. doi: 10.1016/j.febslet.2014.11.045
|
[24] |
Ni R, Liu XY, Zhang JZ, et al. Identification of a flavonoid C-glycosyltransferase from fern species Stenoloma chusanum and the application in synthesizing flavonoid C-glycosides in Escherichia coli[J]. Microb Cell Fact, 2022, 21(1): 210. doi: 10.1186/s12934-022-01940-z
|
[25] |
Feng CY, Li SS, Taguchi G, et al. Enzymatic basis for stepwise C-glycosylation in the formation of flavonoid di-C-glycosides in sacred lotus (Nelumbo nucifera Gaertn. )[J]. Plant J, 2021, 106(2): 351-365. doi: 10.1111/tpj.15168
|
[26] |
Wang X, Li CF, Zhou C, et al. Molecular characterization of the C-glucosylation for puerarin biosynthesis in Pueraria lobata[J]. Plant J, 2017, 90(3): 535-546. doi: 10.1111/tpj.13510
|
[27] |
Nagatomo Y, Usui S, Ito T, et al. Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon[J]. Plant J, 2014, 80(3): 437-448. doi: 10.1111/tpj.12645
|
[28] |
Xie KB, Zhang XL, Sui SY, et al. Exploring and applying the substrate promiscuity of a C-glycosyltransferase in the chemo-enzymatic synthesis of bioactive C-glycosides[J]. Nat Commun, 2020, 11(1): 5162. doi: 10.1038/s41467-020-18990-9
|
[29] |
Zhang M, Li FD, Li K, et al. Functional characterization and structural basis of an efficient di-C-glycosyltransferase from Glycyrrhiza glabra[J]. J Am Chem Soc, 2020, 142(7): 3506-3512. doi: 10.1021/jacs.9b12211
|
[30] |
Liu H, Nidetzky B. Leloir glycosyltransferases enabled to flow synthesis: continuous production of the natural C-glycoside nothofagin[J]. Biotechnol Bioeng, 2021, 118(11): 4402-4413. doi: 10.1002/bit.27908
|
[31] |
Qiu C, Wang H, Zhao LG, et al. Orientin and vitexin production by a one-pot enzymatic cascade of a glycosyltransferase and sucrose synthase[J]. Bioorg Chem, 2021, 112: 104926. doi: 10.1016/j.bioorg.2021.104926
|
[32] |
Gu N, Liu SM, Qiu C, et al. Biosynthesis of 3'-O-methylisoorientin from luteolin by selecting O-methylation/C-glycosylation motif[J]. Enzyme Microb Technol, 2021, 150: 109862. doi: 10.1016/j.enzmictec.2021.109862
|
[33] |
Chen Z, Sun YW, Wang GY, et al. De novo biosynthesis of C-arabinosylated flavones by utilization of indica rice C-glycosyltransferases[J]. Bioresour Bioprocess, 2021, 8(1): 49.
|
[34] |
Vanegas KG, Larsen AB, Eichenberger M, et al. Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae[J]. Microb Cell Fact, 2018, 17(1): 107. doi: 10.1186/s12934-018-0952-5
|
[35] |
Pei JJ, Sun Q, Zhao LG, et al. Efficient biotransformation of luteolin to isoorientin through adjusting induction strategy, controlling acetic acid, and increasing UDP-glucose supply in Escherichia coli[J]. J Agric Food Chem, 2019, 67(1): 331-340. doi: 10.1021/acs.jafc.8b05958
|
[36] |
Wu YB, Wang H, Liu Y, et al. An efficient preparation and biocatalytic synthesis of novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside through using resting cells and macroporous resins[J]. Biotechnol Biofuels Bioprod, 2022, 15(1): 129. doi: 10.1186/s13068-022-02228-5
|
[37] |
Wang H, Wu YB, Liu Y, et al. Screening and characterizing flavone synthases and its application in biosynthesizing vitexin from naringenin by a one-pot enzymatic cascade[J]. Enzyme Microb Technol, 2022, 160: 110101. doi: 10.1016/j.enzmictec.2022.110101
|
[38] |
Mashima K, Hatano M, Suzuki H, et al. Identification and characterization of apigenin 6-C-glucosyltransferase involved in biosynthesis of isosaponarin in wasabi (Eutrema japonicum)[J]. Plant Cell Physiol, 2019, 60(12): 2733-2743. doi: 10.1093/pcp/pcz164
|
[39] |
Liu SK, Lyu YB, Yu SQ, et al. Efficient production of orientin and vitexin from luteolin and apigenin using coupled catalysis of glycosyltransferase and sucrose synthase[J]. J Agric Food Chem, 2021, 69(23): 6578-6587. doi: 10.1021/acs.jafc.1c00602
|
[40] |
Liu H, Tegl G, Nidetzky B. Glycosyltransferase co-immobilization for natural product glycosylation: cascade biosynthesis of the C-glucoside nothofagin with efficient reuse of enzymes[J]. Adv Synth Catal, 2021, 363(8): 2157-2169. doi: 10.1002/adsc.202001549
|
[41] |
Liu H, Štiglic AD, Mohan T, et al. Nano-fibrillated cellulose-based scaffolds for enzyme (co)-immobilization: application to natural product glycosylation by Leloir glycosyltransferases[J]. Int J Biol Macromol, 2022, 222 (Pt A): 217-227.
|
[42] |
Pei JJ, Sun Q, Gu N, et al. Production of isoorientin and isovitexin from luteolin and apigenin using coupled catalysis of glycosyltransferase and sucrose synthase[J]. Appl Biochem Biotechnol, 2020, 190(2): 601-615. doi: 10.1007/s12010-019-03112-z
|
[43] |
Gutmann A, Krump C, Bungaruang L, et al. A two-step O- to C-glycosidic bond rearrangement using complementary glycosyltransferase activities[J]. Chem Commun, 2014, 50(41): 5465-5468. doi: 10.1039/C4CC00536H
|
[44] |
Chong Y, Kim BG, Park YJ, et al. Production of four flavonoid C-glucosides in Escherichia coli[J]. J Agric Food Chem, 2023, 71(13): 5302-5313. doi: 10.1021/acs.jafc.3c00297
|