• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
SHEN Jiamiao, CAI Juntao, LI Jieming, et al. Research progress on the mechanism of traditional Chinese medicine polysaccharides in preventing and treating kidney injury[J]. J China Pharm Univ, 2024, 55(4): 454 − 462. DOI: 10.11665/j.issn.1000-5048.2024051501
Citation: SHEN Jiamiao, CAI Juntao, LI Jieming, et al. Research progress on the mechanism of traditional Chinese medicine polysaccharides in preventing and treating kidney injury[J]. J China Pharm Univ, 2024, 55(4): 454 − 462. DOI: 10.11665/j.issn.1000-5048.2024051501

Research progress on the mechanism of traditional Chinese medicine polysaccharides in preventing and treating kidney injury

Funds: This study was supported by the Natural Science Foundation of Henan Province(No.232300421374)and the China Postdoctoral Science Foundation(No.2021M690936)
More Information
  • Received Date: May 14, 2024
  • Traditional Chinese medicine (TCM) polysaccharides are active polysaccharides extracted from Chinese herbal medicines, many of which exhibit specific biological activities. Modern research has revealed that polysaccharide components extracted from plants, animals, and algae have a significant role in improving kidney injury. Currently, drug therapy is the primary treatment for kidney injury, with few reports on the use of TCM polysaccharides. This review explores the therapeutic effects and mechanisms of TCM polysaccharides on diabetic nephropathy, nephritis, kidney stones, hypertension-induced kidney injury, chemical toxin-induced kidney injury, and drug-induced kidney injury. Additionally, it discusses the prospects for the development of TCM polysaccharides in this field to provide a reference for further research.

  • [1]
    Yang C, Wang HB, Zhao XJ, et al. CKD in China: evolving spectrum and public health implications[J]. Am J Kidney Dis, 2020, 76(2): 258-264. doi: 10.1053/j.ajkd.2019.05.032
    [2]
    Wang LM, Xu X, Zhang M, et al. Prevalence of chronic kidney disease in China: results from the sixth China chronic disease and risk factor surveillance[J]. JAMA Intern Med, 2023, 183(4): 298-310. doi: 10.1001/jamainternmed.2022.6817
    [3]
    Yang L, Xing GL, Wang L, et al. Acute kidney injury in China: a cross-sectional survey[J]. Lancet, 2015, 386(10002): 1465-1471. doi: 10.1016/S0140-6736(15)00344-X
    [4]
    Chawla LS, Eggers PW, Star RA, et al. Acute kidney injury and chronic kidney disease as interconnected syndromes[J]. N Engl J Med, 2014, 371(1): 58-66. doi: 10.1056/NEJMra1214243
    [5]
    Li J, Li TL, Li ZP, et al. Potential therapeutic effects of Chinese meteria medica in mitigating drug-induced acute kidney injury[J]. Front Pharmacol, 2023, 14: 1153297. doi: 10.3389/fphar.2023.1153297
    [6]
    Yu Y, Shen MY, Song QQ, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review[J]. Carbohydr Polym, 2018, 183: 91-101. doi: 10.1016/j.carbpol.2017.12.009
    [7]
    Huang GL, Mei XY, Hu JC. The antioxidant activities of natural polysaccharides[J]. Curr Drug Targets, 2017, 18(11): 1296-1300.
    [8]
    Du B, Xu BJ. Editorial: immune-boosting effects of dietary bioactive polysaccharides[J]. Front Nutr, 2022, 9: 1102641. doi: 10.3389/fnut.2022.1102641
    [9]
    Ying Y, Hao W. Immunomodulatory function and anti-tumor mechanism of natural polysaccharides: a review[J]. Front Immunol, 2023, 14: 1147641. doi: 10.3389/fimmu.2023.1147641
    [10]
    Chen L, Huang GL. The antiviral activity of polysaccharides and their derivatives[J]. Int J Biol Macromol, 2018, 115: 77-82. doi: 10.1016/j.ijbiomac.2018.04.056
    [11]
    Ding M, Wang G, Yuan P, et al. Research progress in the role and mechanism of polysaccharides in regulating glucose and lipid metabolism[J]. J South Med Univ, 2021, 41(3): 471-475.
    [12]
    Yang MJ, Lv JH, Yang JM, et al. Effects of Codonopsis pilosula crude polysaccharides by hypoglycemic and modulating gut microbiome in a high-fat diet and streptozotocin-induced mouse model of T2DM[J]. J Funct Foods, 2023, 111: 105893. doi: 10.1016/j.jff.2023.105893
    [13]
    Shen SY, Zhong HY, Zhou XS, et al. Advances in traditional Chinese medicine research in diabetic kidney disease treatment[J]. Pharm Biol, 2024, 62(1): 222-232. doi: 10.1080/13880209.2024.2314705
    [14]
    Stephens JW, Brown KE, Min T. Chronic kidney disease in type 2 diabetes: implications for managing glycaemic control, cardiovascular and renal risk[J]. Diabetes Obes Metab, 2020, 22(Suppl 1): 32-45.
    [15]
    Guo MF, Gao JR, Jiang L, et al. Astragalus polysaccharide ameliorates renal inflammatory responses in a diabetic nephropathy by suppressing the TLR4/NF-κB pathway[J]. Drug Des Devel Ther, 2023, 17 : 2107-2118.
    [16]
    Chen JJ, Wang Y, Sang TT, et al. Research progress on Ganoderma polysaccharide in prevention and treatment of diabetes and its complications[J]. Chin Tradit Herb Drugs(中草药), 2022, 53(3): 937-947.
    [17]
    Wan FQ, Ma FL, Wu JX, et al. Effect of Lycium barbarum polysaccharide on decreasing serum amyloid A3 expression through inhibiting NF-κB activation in a mouse model of diabetic nephropathy[J]. Anal Cell Pathol, 2022, 2022: 7847135.
    [18]
    Jiang T, Shen SL, Wang L, et al. Grifola frondosa polysaccharide ameliorates early diabetic nephropathy by suppressing the TLR4/NF-κB pathway[J]. Appl Biochem Biotechnol, 2022, 194 (9): 4093-4104.
    [19]
    Wang YN, Zhong JX, Zhang XZ, et al. The role of HMGB1 in the pathogenesis of type 2 diabetes[J]. J Diabetes Res, 2016, 2016: 2543268.
    [20]
    Wang MH, Liu XY, Wang ZL, et al. The extract of Polygala fallax Hemsl. slows the progression of diabetic nephropathy by targeting TLR4 anti-inflammation and MMP-2/9-mediated anti-fibrosis in vitro[J]. Phytomedicine, 2022, 104: 154251. doi: 10.1016/j.phymed.2022.154251
    [21]
    Liu ZZ, Weng HB, Zhang LJ, et al. Bupleurum polysaccharides ameliorated renal injury in diabetic mice associated with suppression of HMGB1-TLR4 signaling[J]. Chin J Nat Med, 2019, 17 (9): 641-649.
    [22]
    Cheng Q, Pan J, Zhou ZL, et al. Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy[J]. Acta Pharmacol Sin, 2021, 42(6): 954-963. doi: 10.1038/s41401-020-00525-z
    [23]
    Han X, Zhang JJ, Zhou L, et al. Sclareol ameliorates hyperglycemia-induced renal injury through inhibiting the MAPK/NF-κB signaling pathway[J]. Phytother Res, 2022, 36(6): 2511-2523. doi: 10.1002/ptr.7465
    [24]
    Gong P, Cui DD, Guo YX, et al. A novel polysaccharide obtained from Siraitia grosvenorii alleviates inflammatory responses in a diabetic nephropathy mouse model via the TLR4-NF-κB pathway[J]. Food Funct, 2021, 12(19): 9054-9065. doi: 10.1039/D1FO01182K
    [25]
    Fang QY, Hu JL, Nie QX, et al. Effects of polysaccharides on glycometabolism based on gut microbiota alteration[J]. Trends Food Sci Technol, 2019, 92: 65-70. doi: 10.1016/j.jpgs.2019.08.015
    [26]
    Cai Y, Liu W, Lin YX, et al. Compound polysaccharides ameliorate experimental colitis by modulating gut microbiota composition and function[J]. J Gastroenterol Hepatol, 2019, 34(9): 1554-1562. doi: 10.1111/jgh.14583
    [27]
    Zhang M, Yang LC, Zhu MM, et al. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats[J]. Int J Biol Macromol, 2022, 206 : 849-860.
    [28]
    Zhao H, Chen C, Zhao Y, et al. Effect of polysaccharides from Plantaginis semen on renal injury and gut microbiota in rats with membranous nephropathy[J]. Chin J Exp Tradit Med Form(中国实验方剂学杂志), 2021, 27(22): 92-99.
    [29]
    Song QY, Weng ST, Zhang KP, et al. Effect of Trichosanthes kirilowiiMaxim. seed polysaccharides on alleviating liver and kidney injury induced by type II diabetes mellitus in mice and its regulation of intestinal flora[J]. China Food Addit(中国食品添加剂), 2024, 35(1): 150-161.
    [30]
    Lu XH, Crowley SD. Inflammation in salt-sensitive hypertension and renal damage[J]. Curr Hypertens Rep, 2018, 20(12): 103. doi: 10.1007/s11906-018-0903-x
    [31]
    Liu YH. Cellular and molecular mechanisms of renal fibrosis[J]. Nat Rev Nephrol, 2011, 7(12): 684-696. doi: 10.1038/nrneph.2011.149
    [32]
    Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis[J]. Chem Biol Interact, 2018, 292: 76-83. doi: 10.1016/j.cbi.2018.07.008
    [33]
    Huang CF, Jing XQ, Wu QH, et al. Novel pectin-like polysaccharide from Panax notoginseng attenuates renal tubular cells fibrogenesis induced by TGF-Β[J]. Carbohydr Polym, 2022, 276: 118772. doi: 10.1016/j.carbpol.2021.118772
    [34]
    Zheng W, Huang T, Tang QZ, et al. Astragalus polysaccharide reduces blood pressure, renal damage, and dysfunction through the TGF-β1-ILK pathway[J]. Front Pharmacol, 2021, 12 : 706617.
    [35]
    Wan YZ, Wang SP, Chen KX, et al. High-sulfated derivative of polysaccharide from Ulva pertusa improves adriamycin-induced nephrotic syndrome by suppressing oxidative stress[J]. Food Funct, 2023, 14(20): 9167-9180. doi: 10.1039/D3FO01290E
    [36]
    Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325-338. doi: 10.1038/nrneph.2016.48
    [37]
    Dong XJ, Gan Y, Ding LN, et al. Effect of Jiawei fengshining on synovial cell apoptosis and TGF-β1/smad signaling pathway in rats with rheumatoid arthritis[J]. Evid Based Complement Alternat Med, 2019, 2019: 8614034.
    [38]
    Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling[J]. Nature, 2003, 425(6958): 577-584. doi: 10.1038/nature02006
    [39]
    Li XY, Chen HR, Kuang DD, et al. Laminaria japonica polysaccharide attenuates podocyte epithelial-mesenchymal transformation via TGF-β1-mediated Smad3 and p38MAPK pathways[J]. Int J Biol Macromol, 2023, 241 : 124637.
    [40]
    Pisoschi AM, Pop A, Iordache F, et al. Oxidative stress mitigation by antioxidants: an overview on their chemistry and influences on health status[J]. Eur J Med Chem, 2021, 209: 112891. doi: 10.1016/j.ejmech.2020.112891
    [41]
    Shi YY, Zhou L, Zheng GZ, et al. Therapeutic mechanism exploration of polysaccharides from Dendrobium officinale on unilateral ureteral obstruction operation-induced renal fibrosis based on improving oxidative stress injury mediated by AhR/NOX4 pathway[J]. Int J Biol Macromol, 2023, 253 (Pt 3): 126920.
    [42]
    Song QY, Kong LQ. Chemical structure and protective effect against alcoholic kidney and heart damages of a novel polysaccharide from Piperis Dahongpao[J]. Carbohydr Res, 2022, 522: 108698. doi: 10.1016/j.carres.2022.108698
    [43]
    Wu T, Shen MY, Liu SH, et al. Ameliorative effect of Cyclocarya paliurus polysaccharides against carbon tetrachloride induced oxidative stress in liver and kidney of mice[J]. Food Chem Toxicol, 2020, 135: 111014. doi: 10.1016/j.fct.2019.111014
    [44]
    Sauser L, Shoshan MS. Harnessing Peptides against lead pollution and poisoning: achievements and prospects[J]. J Inorg Biochem, 2020, 212: 111251. doi: 10.1016/j.jinorgbio.2020.111251
    [45]
    Zhou MY, Zhang X, Liu HS, et al. Experimental study of Sagittaria sagittifolia polysaccharide regulating Nrf2/HO-1 to improve kidney injury in mice induced by six heavy metals[J]. China J Tradit Chin Med Pharm(中华中医药杂志), 2023, 38(8): 3810-3814.
    [46]
    Xie W, Chen HG, Chen RH, et al. Intervention effect of Lycium barbarum polysaccharide on lead-induced kidney injury mice and its mechanism: a study based on the PI3K/Akt/mTOR signaling pathway[J]. J Ethnopharmacol, 2024, 319 (Pt 2): 117197.
    [47]
    Farhat F, Nofal S, Raafat EM, et al. Akt/GSK3β/Nrf2/HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity[J]. Neuropharmacology, 2021, 196: 108654. doi: 10.1016/j.neuropharm.2021.108654
    [48]
    Liu YY, Li HL, Ren P, et al. Polysaccharide from Flammulina velutipes residues protects mice from Pb poisoning by activating Akt/GSK3β/Nrf-2/HO-1 signaling pathway and modulating gut microbiota[J]. Int J Biol Macromol, 2023, 230: 123154. doi: 10.1016/j.ijbiomac.2023.123154
    [49]
    Xu WH, Yang JL, Gu XY, et al. Mechanochemical prepared ibuprofen-Polygonatum sibiricum polysaccharide drug delivery system for enhanced bioactivity with reduced renal injury induced by NSAIDs[J]. Drug Deliv, 2022, 29(1): 351-363. doi: 10.1080/10717544.2022.2026533
    [50]
    Li BX, Gong SY, Xu DN, et al. Polysaccharide of Atractylodes macrocephala Koidz alleviate kidney injury induced by cyclophosphamide in mice through arachidonic acid metabolic pathway[J]. Sci Technol Food Ind(食品工业科技), 2024, 45(10): 325-334.
    [51]
    Wang X, Liu W, Jin GZ, et al. Salvia miltiorrhiza polysaccharides alleviates florfenicol induced kidney injury in chicks via inhibiting oxidative stress and apoptosis[J]. Ecotoxicol Environ Saf, 2022, 233 : 113339.
    [52]
    Ma Q, Xu Y, Tang LM, et al. Astragalus polysaccharide attenuates cisplatin-induced acute kidney injury by suppressing oxidative damage and mitochondrial dysfunction[J]. Biomed Res Int, 2020, 2020 : 2851349.
    [53]
    Lu T, Zhao WE, Zhang F, et al. Lycium barbarum polysaccharides attenuate rat anti-Thy-1 glomerulonephritis through mediating pyruvate dehydrogenase[J]. Biomedecine Pharmacother, 2019, 116 : 109020.
    [54]
    Gan Y, Tao S, Cao D, et al. Protection of resveratrol on acute kidney injury in septic rats[J]. Hum Exp Toxicol, 2017, 36(10): 1015-1022. doi: 10.1177/0960327116678298
    [55]
    Regueira T, Andresen M, Mercado M, et al. Physiopathology of acute renal failure during sepsis[J]. Med Intensiva, 2011, 35(7): 424-432. doi: 10.1016/j.medin.2011.03.011
    [56]
    Abrams MT, Koser ML, Seitzer J, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment[J]. Mol Ther, 2010, 18(1): 171-180. doi: 10.1038/mt.2009.208
    [57]
    Zhao H, Xu J, Wang RY, et al. Plantaginis semen polysaccharides ameliorate renal damage through regulating NLRP3 inflammasome in gouty nephropathy rats[J]. Food Funct, 2021, 12 (6): 2543-2553.
    [58]
    Huang YY, Zhou F, Shen C, et al. LBP reduces theinflammatory injuryof kidney in septic rat and regulates the Keap1-Nrf2∕ARE signaling pathway1[J]. Acta Cir Bras, 2019, 34(1): e20190010000003.
    [59]
    Hao YT, Lao SH, Liu HL, et al. Isolation and characterization of a nephroprotective polysaccharide from Dendrobium chrysotoxum Lindl against LPS-induced acute kidney injury mice[J]. Int J Biol Macromol, 2023, 253 (Pt 1): 126614.
    [60]
    Ma T, Liu XW, Liu Z. Function of the p38MAPK-HSP27 pathway in rat lung injury induced by acute ischemic kidney injury[J]. Biomed Res Int, 2013, 2013: 981235.
    [61]
    Han CY, Sun TT, Liu YW, et al. Protective effect of Polygonatum sibiricum polysaccharides on gentamicin-induced acute kidney injury in rats via inhibiting p38 MAPK/ATF2 pathway[J]. Int J Biol Macromol, 2020, 151: 595-601. doi: 10.1016/j.ijbiomac.2020.02.049
    [62]
    Fong-Ngern K, Sueksakit K, Thongboonkerd V. Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells[J]. J Biol Inorg Chem, 2016, 21(4): 463-474. doi: 10.1007/s00775-016-1355-x
    [63]
    Sutthimethakorn S, Thongboonkerd V. Effects of high-dose uric acid on cellular proteome, intracellular ATP, tissue repairing capability and calcium oxalate crystal-binding capability of renal tubular cells: implications to hyperuricosuria-induced kidney stone disease[J]. Chem Biol Interact, 2020, 331: 109270. doi: 10.1016/j.cbi.2020.109270
    [64]
    Hirose M, Tozawa K, Okada A, et al. Role of osteopontin in early phase of renal crystal formation: immunohistochemical and microstructural comparisons with osteopontin knock-out mice[J]. Urol Res, 2012, 40(2): 121-129. doi: 10.1007/s00240-011-0400-z
    [65]
    Chen XW, Sun XY, Tang GH, et al. Sulfated Undaria pinnatifida polysaccharide inhibits the formation of kidney stones by inhibiting HK-2 cell damage and reducing the adhesion of nano-calcium oxalate crystals[J]. Biomater Adv, 2022, 134: 112564. doi: 10.1016/j.msec.2021.112564
    [66]
    Duan XL, Kong ZZ, Mai X, et al. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney[J]. Redox Biol, 2018, 16: 414-425. doi: 10.1016/j.redox.2018.03.019
    [67]
    Sun Y, Liu YL, Guan XF, et al. Atorvastatin inhibits renal inflammatory response induced by calcium oxalate crystals via inhibiting the activation of TLR4/NF-κB and NLRP3 inflammasome[J]. IUBMB Life, 2020, 72(5): 1065-1074. doi: 10.1002/iub.2250
    [68]
    Zhang YH, Li CY, Zou GJ, et al. Corn silk polysaccharides with different carboxyl contents reduce the oxidative damage of renal epithelial cells by inhibiting endocytosis of nano-calcium oxalate crystals[J]. ACS Omega, 2023, 8(29): 25839-25849. doi: 10.1021/acsomega.3c01306
    [69]
    Shi Y, Shi XJ, Zhao MM, et al. Pharmacological potential of Astragali Radix for the treatment of kidney diseases[J]. Phytomedicine, 2024, 123: 155196. doi: 10.1016/j.phymed.2023.155196
  • Related Articles

    [1]REN Weijie, CEN Lifang, ZOU Yi. Research progress of Bruton's tyrosine kinase (BTK) inhibitors in the treatment of inflammatory and immune-mediated diseases[J]. Journal of China Pharmaceutical University, 2024, 55(1): 63-72. DOI: 10.11665/j.issn.1000-5048.2023121103
    [2]YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615
    [3]BU Hong, ZHOU Jinpei, ZHANG Huibin. Research progress of mitogen-activated protein kinase interacting kinases inhibitors in tumor immunotherapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 410-421. DOI: 10.11665/j.issn.1000-5048.20210403
    [4]ZHAO Limeng, WANG Shuzhen. Therapeutic applications of small molecule kinase inhibitors in liver fibrosis[J]. Journal of China Pharmaceutical University, 2018, 49(2): 147-157. DOI: 10.11665/j.issn.1000-5048.20180203
    [5]YUAN Zhong, CHEN Zhuo, LI Qianbin, HU Gaoyun. Advances in research of protein tyrosine phosphatase 1B and its inhibitors[J]. Journal of China Pharmaceutical University, 2018, 49(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20180101
    [6]LI Tonghui, GUO Hao, LU Tao, WANG Yue, LU Shuai, TANG Weifang. Advances in the research of FLT3 inhibitors for acute myeloid leukemia[J]. Journal of China Pharmaceutical University, 2015, 46(2): 153-161. DOI: 10.11665/j.issn.1000-5048.20150203
    [7]ZHANG Yuan, CHENG Yulan, ZHOU Jinpei, ZHANG Huibin. Advances on receptor tyrosine kinase inhibitors taking c-Met as anti-tumor target[J]. Journal of China Pharmaceutical University, 2015, 46(1): 16-27. DOI: 10.11665/j.issn.1000-5048.20150102
    [8]HUANG Fei, ZHU Haijing, ZHOU Xiang, LU Tao, JIAO Yu, TANG Weifang. Progress of Bruton′s tyrosine kinase(BTK)and its inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(6): 617-624. DOI: 10.11665/j.issn.1000-5048.20140602
    [9]ZHU Yaqi, YAN Fang, DI Bin, YAN Jia, LI Jiachang, LI Yunman. Inhibiting effect of emodin on adriamycin-resistance of K562/ADM cell line[J]. Journal of China Pharmaceutical University, 2014, 45(4): 462-468. DOI: 10.11665/j.issn.1000-5048.20140414
    [10]DONG Gaochao, ZHOU Xiang, TANG Weifang, LU Tao. Advances in the research and development of B-Raf inhibitors[J]. Journal of China Pharmaceutical University, 2014, 45(1): 1-9. DOI: 10.11665/j.issn.1000-5048.20140101

Catalog

    Article views (379) PDF downloads (31) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return