Citation: | LI Qianqian, WANG Nan, LUO Jun. Sesquiterpenoid glycosides from the aerial parts of Sarcandra glabra[J]. J China Pharm Univ, 2024, 55(5): 639 − 644. DOI: 10.11665/j.issn.1000-5048.2024052203 |
In order to explore the chemical constituents of Sarcandra glabra (Thunb.) Nakai, 10 compounds were isolated and identified from the water extraction of fresh aerial parts of Sarcandra glabra by silica gel column chromatography, polyamide column chromatography, gel column chromatography, and preparative high-performance liquid chromatography, including 2 elemane-type sesquiterpenoid glycosides, 6 violet ketone sesquiterpenoid glycosides, and 2 phenolic acid compounds. Based on their physicochemical properties and NMR data, the above compounds have been identified as sarcaglaboside C (1), sarcaglaboside D (2), byzantionoside B (3), lauroside E (4), (4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one (5), dihydrovomifoliol-O-β-D-glucopyranoside (6), (+)-abscisyl-β-D-glucopyranoside (7), 9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one (8), rosmarinic acid methyl ester (9) and methyl isorinate (10). Among them, compounds 3 - 5 and 8 - 9 were firstly isolated from S. glabra. The discovery of these compounds further enriches the structural types of compounds in S. glabra plants and provides an important material basis for subsequent pharmacological activity research.
[1] |
Editorial Board of the Flora of China. Flora of China: Vol 20 (中国植物志: 第20卷)[M]. Beijing: Science Press, 1997: 84.
|
[2] |
He RR, Wang M, Li YF, et al. Effects of Sarcandra glabra extract on immune activity in restraint stress mice[J]. China J Chin Mater Med, 2009, 34(1): 100-103.
|
[3] |
Liu CP, Liu JX, Gu JY, et al. Combination effect of three main constituents from Sarcandra glabra inhibits oxidative stress in the mice following acute lung injury: a role of MAPK-NF-κB pathway[J]. Front Pharmacol, 2020, 11: 580064.
|
[4] |
Yang XR, Tanaka N, Tsuji D, et al. Sarcaglabrin A, a conjugate of C15 and C10 terpenes from the aerial parts of Sarcandra glabra[J]. Tetrahedron Lett, 2020, 61(25): 151916. doi: 10.1016/j.tetlet.2020.151916
|
[5] |
Zeng YL, Liu JY, Zhang Q, et al. The traditional uses, phytochemistry and pharmacology of Sarcandra glabra (thunb.) nakai, a Chinese herb with potential for development: review[J]. Front Pharmacol, 2021, 12: 652926. doi: 10.3389/fphar.2021.652926
|
[6] |
Wang YY, Li QR, Chi J, et al. Sesquiterpenoids from the leaves of Sarcandra glabra[J]. Chin J Nat Med, 2022, 20(3): 215-220.
|
[7] |
Wang P, Li RJ, Liu RH, et al. Sarglaperoxides A and B, sesquiterpene-normonoterpene conjugates with a peroxide bridge from the seeds of Sarcandra glabra[J]. Org Lett, 2016, 18(4): 832-835. doi: 10.1021/acs.orglett.6b00112
|
[8] |
Luo J, Zhang DY, Tang PF, et al. Chemistry and bioactivity of lindenane sesquiterpenoids and their oligomers[J]. Nat Prod Rep, 2024, 41(1): 25-58. doi: 10.1039/D3NP00022B
|
[9] |
Zhang DY, Xiao ZQ, Wang N, et al. Trisarcglaboids A and B, two cytotoxic lindenane sesquiterpenoid trimers with a unique polymerization mode isolated from Sarcandra glabra[J]. Bioorg Chem, 2024, 146: 107259. doi: 10.1016/j.bioorg.2024.107259
|
[10] |
Chu JN, Krishnan P, Lim KH. A comprehensive review on the chemical constituents, sesquiterpenoid biosynthesis and biological activities of Sarcandra glabra[J]. Nat Prod Bioprospect, 2023, 13(1): 53. doi: 10.1007/s13659-023-00418-8
|
[11] |
Li Y, Zhang DM, Li JB, et al. Hepatoprotective sesquiterpene glycosides from Sarcandra glabra[J]. J Nat Prod, 2006, 69(4): 616-620. doi: 10.1021/np050480d
|
[12] |
Samy MN, Khalil HE, Sugimoto S, et al. Three new flavonoid glycosides, byzantionoside B6'-O-sulfate and xyloglucoside of (Z)-hex-3-en-1-ol from Ruellia patula[J]. Chem Pharm Bull, 2011, 59(6): 725-729. doi: 10.1248/cpb.59.725
|
[13] |
Matsunami K, Takamori I, Shinzato T, et al. Radical-scavenging activities of new megastigmane glucosides from Macaranga tanarius (L.) MULL. -ARG[J]. Chem Pharm Bull, 2006, 54 (10): 1403-1407.
|
[14] |
Khan MS, Nahar N, Mosihuzzaman M, et al. Neolignan and megastigmane glycosides from the leaves of Pterospermum semisagittatum[J]. Pharmazie, 2005, 60(1): 72-74.
|
[15] |
Andersson R, Lundgren LN. Monoaryl and cyclohexenone glycosides from needles of Pinus sylvestris[J]. Phytochemistry, 1988, 27(2): 559-562. doi: 10.1016/0031-9422(88)83141-8
|
[16] |
Koshimizu K, Inui M, Fukui H, et al. Isolation of (+)-abscisyl-β-D-glucopyranoside from immature fruit of Lupinus luteus[J]. Agric Biol Chem, 1968, 32(6): 789-791. doi: 10.1080/00021369.1968.10859139
|
[17] |
Sarker SD, Dinan L, S̆ik V, et al. 9ξ-O-β-d-Glucopyranosyloxy-5-megastigmen-4-one from Lamium album[J]. Phytochemistry, 1997, 45(7): 1431-1433. doi: 10.1016/S0031-9422(97)00160-X
|
[18] |
Wu ZJ, OuYang MA, Yang CR. Polyphenolic Constituents of Salvia przewalskii[J]. Acta Botanica Yunnanica (云南植物研究), 1999 (4): 512-516.
|
[19] |
Zhang L, Zhou GX, Li Q, et al. Chemical composition of Isodon lophanthoides[J]. J Shenyang Pharm Univ (沈阳药科大学学报), 2006 (12): 768-770, 787.
|