Citation: | ZHAO Xiujuan, YANG Hengli, WU Jinye, et al. Synthesis and anti-inflammatory activity of three series of coumarin-based derivatives[J]. J China Pharm Univ, 2025, 56(1): 40 − 48. DOI: 10.11665/j.issn.1000-5048.2024072101 |
In this work, starting from 4-hydroxycoumarin, three series of 22 coumarin derivatives, among which 8 have not been reported in the literature, were synthesized and their in vitro anti-inflammatory activities and mechanisms of action were preliminarily investigated using mouse macrophage model. The results showed that most of the derivatives could significantly inhibit the production of pro-inflammatory factor NO, with compounds 2e, 2f, 2g, 2h, 2i, 2j, 4e, and 4f showing better anti-inflammatory activity than the positive control drug dexamethasone. Further experiments showed that compounds 2h and 4f significantly inhibited the production of pro-inflammatory factors IL-6, TNF-α and IL-1β in RAW264.7 macrophages, and could, therefore, be used as lead compounds for further studies.
[1] |
Kunnumakkara AB, Sailo BL, Banik K, et al. Chronic diseases, inflammation, and spices: how are they linked[J]? J Transl Med, 2018, 16 (1): 14.
|
[2] |
Ye CL, Chen JC, Wu LH, et al. Research progress on anti-inflammatory activity of coumarin[J]. Mod Med Health (现代医药卫生), 2022, 38(23): 4063-4065,4069.
|
[3] |
Quan CF, Chen B, Yun WZ, et al. On the role of health education in the prevention and treatment of chronic diseases in communities[J]. Chronic Pathematology J (慢性病学杂志), 2013, 14(10): 796-797.
|
[4] |
Ruan JY, Shi ZW, Cao XY, et al. Research progress on anti-inflammatory effects and related mechanisms of astragalin[J]. Int J Mol Sci, 2024, 25(8): 4476. doi: 10.3390/ijms25084476
|
[5] |
Xing T, Wang M, Yu SY, et al. Synthesis and anti-inflammatory activity of chromone-oxadiazole(line) derivatives[J]. Chem Res Appl (化学研究与应用), 2023, 35(11): 2643-2650.
|
[6] |
Li Y, Pan Z, Xiao M, et al. Advances in research on small intestinal injuries caused by nonsteroidal anti-inflammatory drugs and its prevention and treatment[J]. 2023, 54 (2): 150-158.
|
[7] |
Lv HW, Liang HM, Zhu MD, et al. Research progress in biosynthesis-related enzymes of coumarin compounds and their bioactivities[J]. Chin J Chin Mater Med (中国中药杂志), 2024, 49(14): 3693-3705.
|
[8] |
Revankar HM, Bukhari SNA, Kumar GB, et al. Coumarins scaffolds as COX inhibitors[J]. Bioorg Chem, 2017, 71: 146-159. doi: 10.1016/j.bioorg.2017.02.001
|
[9] |
Hassanein EHM, Sayed AM, Hussein OE, et al. Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020: 1675957.
|
[10] |
di Stasi LC. Coumarin derivatives in inflammatory bowel disease[J]. Molecules, 2021, 26(2): 422. doi: 10.3390/molecules26020422
|
[11] |
Lee G, Park JS, Lee EJ, et al. Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia[J]. Phytomedicine, 2019, 55: 50-57. doi: 10.1016/j.phymed.2018.06.032
|
[12] |
Wang MS, Jiang CX, Zhang YL. Synthesis of mono-carbonyl curcumin analogues containing nitrogen heterocyclic ring and their anti-inflammatory activities[J]. Chin Tradit Herb Drugs (中草药), 2014, 45(24): 3532-3537.
|
[13] |
Khan KM, Iqbal S, Lodhi MA, et al. Biscoumarin: new class of urease inhibitors; economical synthesis and activity[J]. Bioorg Med Chem, 2004, 12(8): 1963-1968. doi: 10.1016/j.bmc.2004.01.010
|
[14] |
Min SJ, Lee H, Shin MS, et al. Synthesis and biological properties of pyranocoumarin derivatives as potent anti-inflammatory agents[J]. Int J Mol Sci, 2023, 24(12): 10026. doi: 10.3390/ijms241210026
|
[15] |
Antonini I, Polucci P, Magnano A, et al. Rational design, synthesis, and biological evaluation of bis(pyrimido[5, 6, 1-de]acridines) and bis(pyrazolo[3, 4, 5-kl]acridine-5-carboxamides) as new anticancer agents[J]. J Med Chem, 2004, 47(21): 5244-5250. doi: 10.1021/jm049706k
|
[16] |
Rangraz Y, Vahdat SM, Khaksar S. SnO2 nanoparticles: a recyclable and heterogeneous catalyst for Pechmann condensation of coumarins and Knoevenagel condensation-Michael addition of biscoumarins[J]. Heliyon, 2023, 9(4): e15135. doi: 10.1016/j.heliyon.2023.e15135
|
[17] |
Wang YL, Du CJ, Li J, et al. Synthesis of 4H-benzo[ g]chromene derivatives catalyzed by choline hydroxide ionic liquid[J]. Chem Res Appl (化学研究与应用), 2019, 31(8): 1552-1557.
|
[18] |
Khalilzadeh M, Saberi S, Noori G, et al. Synthesis, biological assessment, and computational investigations of nifedipine and monastrol analogues as anti-leishmanial major and anti-microbial agents[J]. Mol Divers, 2023, 27(6): 2555-2575. doi: 10.1007/s11030-022-10569-4
|
[19] |
Liu QY, Mu Y, An Q, et al. Total synthesis and anti-inflammatory evaluation of violacin A and its analogues[J]. Bioorg Chem, 2020, 94: 103420. doi: 10.1016/j.bioorg.2019.103420
|
[20] |
Li RH. Observation of the clinical effect of dexamethasone combined with ambroxol in the treatment of bronchopulmonary dysplasia in premature infants[J]. Strait Pharm J (海峡药学), 2018, 30(2): 221-222.
|
[21] |
Mühlemann B, Thibeault C, Hillus D, et al. Impact of dexamethasone on SARS-CoV-2 concentration kinetics and antibody response in hospitalized COVID-19 patients: results from a prospective observational study[J]. Clin Microbiol Infect, 2021, 27(10): 1520. e7-1521520. e10.
|
[22] |
Guo XH, Wu WH, Ran Q, et al. Exploring the pharmacological mechanisms of the flower of Rhododendron molle in rheumatoid arthritis rats based on metabolomics integrated network pharmacology[J]. J Ethnopharmacol, 2024, 334: 118524. doi: 10.1016/j.jep.2024.118524
|
[23] |
Sui YP, Huo HR, Xin JJ, et al. Antibacterial and antitumor activities of biscoumarin and dihydropyran derivatives[J]. Molecules, 2015, 20(9): 17614-17626. doi: 10.3390/molecules200917614
|
[24] |
Sethiya A, Teli P, Manhas A, et al. Carbon-SO3H: an efficient catalyst for the synthesis of biscoumarin under ambient reaction conditions and their in silico studies[J]. Synth Commun, 2020, 50(16): 2440-2460. doi: 10.1080/00397911.2020.1780613
|
[25] |
Ghosh R, Singha PS, Das LK, et al. Anti-inflammatory activity of natural coumarin compounds from plants of the Indo-Gangetic plain[J]. AIMS Mol Sci, 2023, 10(2): 79-98. doi: 10.3934/molsci.2023007
|
[26] |
Yang LJ, Ding C, Gao C, et al. Biological activities of dicoumarin derivatives[J]. World Notes Antibiot (国外医药 抗生素分册), 2019, 40(1): 56-64.
|
[27] |
Hu HL. Design, synthesis and antitumor activity test of bridged bis-1, 4- dihydropyridine derivatives (桥连双-1, 4-二氢吡啶类衍生物的设计合成及抗肿瘤活性测试研究)[D]. Shijiazhuang: Hebei University of Science and Technology, 2023.
|
[28] |
Lentz F, Hemmer M, Reiling N, et al. Discovery of novel N-phenyl 1, 4-dihydropyridines with a dual mode of antimycobacterial activity[J]. Bioorg Med Chem Lett, 2016, 26(24): 5896-5898. doi: 10.1016/j.bmcl.2016.11.010
|
[29] |
Fan QW, Li P, Yan H. Photophysical properties of 2, 6-unsubstituented 1, 4-dihydropyridines: experimental and theoretical studies[J]. J Photochem Photobiol A Chem, 2018, 358: 51-60. doi: 10.1016/j.jphotochem.2018.03.009
|
[1] | ZHANG Zhixing, DENG Hua, TANG Yun. Applications and challenges of artificial intelligence in the development of anticancer peptides[J]. Journal of China Pharmaceutical University, 2024, 55(3): 347-356. DOI: 10.11665/j.issn.1000-5048.2024040201 |
[2] | HU Zi’ang, GAO Liming, YU Wenying. Advances in the application of artificial intelligence in nucleic acid drug development[J]. Journal of China Pharmaceutical University, 2024, 55(3): 335-346. DOI: 10.11665/j.issn.1000-5048.2024033101 |
[3] | ZENG Hao, WU Guozhen, ZOU Wuxin, WANG Zhe, SONG Jianfei, SHI Hui, WANG Xiaojian, HOU Tingjun, DENG Yafeng. Optimization of Menin inhibitors based on artificial intelligence-driven molecular factory technology[J]. Journal of China Pharmaceutical University, 2024, 55(3): 326-334. DOI: 10.11665/j.issn.1000-5048.2024040904 |
[4] | TANG qian, CHEN Roufen, SHEN Zheyuan, CHI Xinglong, CHE Jinxin, DONG Xiaowu. Research progress of artificial intelligence-based small molecule generation models in drug discovery[J]. Journal of China Pharmaceutical University, 2024, 55(3): 295-305. DOI: 10.11665/j.issn.1000-5048.2024031501 |
[5] | XUE Feng, FENG Shuo, LI Jing. Application and prospect of artificial intelligence in antimicrobial peptides screening[J]. Journal of China Pharmaceutical University, 2023, 54(3): 314-322. DOI: 10.11665/j.issn.1000-5048.2023030901 |
[6] | GU Zhihao, GUO Wenhao, YAO Hequan, LI Xuanyi, LIN Kejiang. Research progress of the screening and generation of lead compounds based on artificial intelligence model[J]. Journal of China Pharmaceutical University, 2023, 54(3): 294-304. DOI: 10.11665/j.issn.1000-5048.2023042201 |
[7] | YU Zehao, ZHANG Leiming, ZHANG Mengna, DAI Zhiqi, PENG Chengbin, ZHENG Siming. Artificial intelligence-based drug development: current progress and future challenges[J]. Journal of China Pharmaceutical University, 2023, 54(3): 282-293. DOI: 10.11665/j.issn.1000-5048.2023041003 |
[8] | WANG Chao, XIAO Fu, LI Miaozhu, PAN Ying, DING Xiao, REN Feng, ZHAVORONKOV Alex, WANG Yazhou. Application progress of artificial intelligence in the screening and identification of drug targets[J]. Journal of China Pharmaceutical University, 2023, 54(3): 269-281. DOI: 10.11665/j.issn.1000-5048.2023041102 |
[9] | YAN Fangrong. Application and advance of artificial intelligence in biomedical field[J]. Journal of China Pharmaceutical University, 2023, 54(3): 263-268. DOI: 10.11665/j.issn.1000-5048.2023030304 |
[10] | Zhang Zunjian, Yu Shuqin, Xiang Bingren, An Dengkui. A New Artificial Neural Network Model:Combined Counter-Back Propagation and its Application[J]. Journal of China Pharmaceutical University, 1996, (11). |
1. |
赵倩,魏宇,郭凯敏,王文佳,周水平,孙鹤,方坚松,胡蕴慧. 人工智能结合生物网络对“养血清脑制剂”和“逍遥丸”组方的优化及验证. 中药药理与临床. 2024(04): 27-33 .
![]() |