Advanced Search
ZOU Zhiwen, WU Jinhui. Construction and cytosolic delivery efficiency study of biomineralized albumin/siRNA nanoparticles[J]. J China Pharm Univ, 2025, 56(3): 321 − 328. DOI: 10.11665/j.issn.1000-5048.2024072202
Citation: ZOU Zhiwen, WU Jinhui. Construction and cytosolic delivery efficiency study of biomineralized albumin/siRNA nanoparticles[J]. J China Pharm Univ, 2025, 56(3): 321 − 328. DOI: 10.11665/j.issn.1000-5048.2024072202

Construction and cytosolic delivery efficiency study of biomineralized albumin/siRNA nanoparticles

More Information
  • Received Date: July 21, 2024
  • Revised Date: August 01, 2024
  • Accepted Date: August 25, 2024
  • Resolving the conflict between cytoplasmic delivery efficiency and biocompatibility of small interfering RNA (siRNA) carriers is crucial for the clinical translation of siRNA therapies. In this study, we developed a highly biocompatible and fully biodegradable siRNA delivery system, MnCO3@BSA/Zn2+/siRNA (MRna), using bovine serum albumin (BSA) and essential metal ions. This carrier leverages the high affinity of Zn2+ and Mn2+ for biomolecules (BSA and siRNA) to achieve siRNA loading and protection through a water-phase “one-pot” self-assembly and biomineralization process, achieving a 90% siRNA encapsulation rate. Additionally, the nanoscale mineral particles allow rapid disintegration in the endosomal environment to release 55% of siRNA and facilitate its endosomal escape by mediating the “proton sponge effect”. Therefore, the colocalization coefficient of siRNA with the lysosome is only 0.18. Ultimately, MRna loaded with CD47 siRNA effectively reduces CD47 expression at both mRNA and protein levels in tumor cells to lower than 50% of the original, showing efficiency comparable to the commercial transfection reagent Lipo2000. Overall, this study provides a more convenient, efficient and biocompatible strategy for designing siRNA delivery systems.

  • [1]
    Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer[J]. Adv Drug Deliv Rev, 2022, 182: 114113. doi: 10.1016/j.addr.2022.114113
    [2]
    Puri S, Mazza M, Roy G, et al. Evolution of nanomedicine formulations for targeted delivery and controlled release[J]. Adv Drug Deliv Rev, 2023, 200: 114962. doi: 10.1016/j.addr.2023.114962
    [3]
    Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles[J]. Adv Drug Deliv Rev, 2020, 154/155: 64-78. doi: 10.1016/j.addr.2020.07.022
    [4]
    Uchida S, Lau CYJ, Oba M, et al. Polyplex designs for improving the stability and safety of RNA therapeutics[J]. Adv Drug Deliv Rev, 2023, 199: 114972. doi: 10.1016/j.addr.2023.114972
    [5]
    Moazzam M, Zhang MJ, Hussain A, et al. The landscape of nanoparticle-based siRNA delivery and therapeutic development[J]. Mol Ther, 2024, 32(2): 284-312. doi: 10.1016/j.ymthe.2024.01.005
    [6]
    Ball RL, Hajj KA, Vizelman J, et al. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA[J]. Nano Lett, 2018, 18(6): 3814-3822. doi: 10.1021/acs.nanolett.8b01101
    [7]
    Cai GL, Chen Y, Lin ST, et al. Application of dendrimer-based siRNA delivery systems[J]. J China Pharm Univ (中国药科大学学报), 50(3): 274-288.
    [8]
    Ballarín-González B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions[J]. Adv Drug Deliv Rev, 2012, 64(15): 1717-1729. doi: 10.1016/j.addr.2012.07.004
    [9]
    Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions[J]. Nat Rev Cancer, 2011, 11(1): 59-67. doi: 10.1038/nrc2966
    [10]
    Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA[J]. Proc Natl Acad Sci USA, 2014, 111(31): 11449-11454. doi: 10.1073/pnas.1411393111
    [11]
    Peer D, Lieberman J. Special delivery: targeted therapy with small RNAs[J]. Gene Ther, 2011, 18(12): 1127-1133. doi: 10.1038/gt.2011.56
    [12]
    Guo S, Li CH, Wang CR, et al. pH-Responsive polymer boosts cytosolic siRNA release for retinal neovascularization therapy[J]. Acta Pharm Sin B, 2024, 14(2): 781-794. doi: 10.1016/j.apsb.2023.09.001
    [13]
    Choi HY, Lee TJ, Yang GM, et al. Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells[J]. J Control Release, 2016, 235: 222-235. doi: 10.1016/j.jconrel.2016.06.007
    [14]
    Karlsson J, Tzeng SY, Hemmati S, et al. Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA delivery as cancer therapy[J]. Adv Funct Mater, 2021, 31(17): 2009768. doi: 10.1002/adfm.202009768
    [15]
    Zou Z, He LB, Deng XX, et al. Zn2+-coordination-driven RNA assembly with retained integrity and biological functions[J]. Angew Chem Int Ed, 2021, 60(42): 22970-22976. doi: 10.1002/anie.202110404
    [16]
    Cen D, Ge QW, Xie CK, et al. ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy[J]. Adv Mater, 2021, 33(49): e2104037. doi: 10.1002/adma.202104037
    [17]
    Huang SD, Gao Y, Li HY, et al. Manganese@Albumin nano complex and its assembled nanowire activate TLR4-dependent signaling cascades of macrophages[J]. Adv Mater, 2024, 36(5): e2310979. doi: 10.1002/adma.202310979
    [18]
    Fan N, Chen KP, Zhu R, et al. Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants[J]. Sci Adv, 2022, 8(51): eabq3500. doi: 10.1126/sciadv.abq3500
    [19]
    Gao ZL, Xu W, Zheng SJ, et al. Orchestrated cytosolic delivery of antigen and adjuvant by manganese ion-coordinated nanovaccine for enhanced cancer immunotherapy[J]. Nano Lett, 2023, 23(5): 1904-1913. doi: 10.1021/acs.nanolett.2c04970
    [20]
    Wen H, Yin YD, Huang C, et al. Encapsulation of RNA by negatively charged human serum albumin via physical interactions[J]. Sci China Chem, 2017, 60(1): 130-135. doi: 10.1007/s11426-016-0094-8
  • Related Articles

    [1]JI Shunli, SONG Fanfan, ZHENG Yang, DING Li. Simultaneous determination of amoxicillin and clavulanic acid by LC-MS/MS in human plasma and its application to a bioequivalence study[J]. Journal of China Pharmaceutical University, 2019, 50(6): 699-706. DOI: 10.11665/j.issn.1000-5048.20190610
    [2]XIAO Yuan-yuan, MA Peng-cheng, WANG Yan, REN Xin-yi, LIU Xiao-quan. Determination of 8′-hydroxy-dihydroergocryptine in human plasma by LC-MS/MS and its application to a bioequivalence evaluation[J]. Journal of China Pharmaceutical University, 2012, 43(2): 177-181.
    [3]Relative Bioavailability of Oxcarbazepine Tablets in Healthy Volunteers[J]. Journal of China Pharmaceutical University, 2004, (3): 50-53.
    [4]Bioequivalence Study of the Two Kinds of Ofloxacin Tablets in Healthy Volunteers[J]. Journal of China Pharmaceutical University, 1998, (6): 433-436.
    [5]Bioequivalence of Doxofylline in Healthy Volunteers[J]. Journal of China Pharmaceutical University, 1998, (5): 33-35.
    [6]Pharmacokinetics and Bioequivalence of Sparfloxacin in Healthy Subject[J]. Journal of China Pharmaceutical University, 1998, (3): 75-77.
    [7]Studies on Ibuprofen Suspension and Its Bioequivalence in Healthy Volunteers[J]. Journal of China Pharmaceutical University, 1997, (3): 11-16.
    [8]Assessment on Relative Bioavailability and Bioequivalence of Glipizide[J]. Journal of China Pharmaceutical University, 1995, (5): 311-313.
    [9]Relative Bioavailability and Bioequivalence Assessment of Domestic Amiloride Tablet[J]. Journal of China Pharmaceutical University, 1994, (1): 9-11.
    [10]Studies on Pharmacokinetics and Bioeqivalence of Aspirin Sustained-Release Pellets[J]. Journal of China Pharmaceutical University, 1993, (6): 334-337.

Catalog

    Article views (47) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return