• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
LIU Yuying, LI Yao, YANG Qiang, CHEN Ran, LI Kailing, ZHANG Jingqing. Stability and pharmacokinetics of hyaluronic acid-modified asparaginase self-assembled biomimetic nanocapsules[J]. Journal of China Pharmaceutical University, 2020, 51(4): 461-465. DOI: 10.11665/j.issn.1000-5048.20200411
Citation: LIU Yuying, LI Yao, YANG Qiang, CHEN Ran, LI Kailing, ZHANG Jingqing. Stability and pharmacokinetics of hyaluronic acid-modified asparaginase self-assembled biomimetic nanocapsules[J]. Journal of China Pharmaceutical University, 2020, 51(4): 461-465. DOI: 10.11665/j.issn.1000-5048.20200411

Stability and pharmacokinetics of hyaluronic acid-modified asparaginase self-assembled biomimetic nanocapsules

Funds: This study was supported by the National Natural Science Foundation of China (No.30973645), the Project Foundation of Chongqing Science and Technology Commission (No.CSTC2015jcyjBX0027) and the Project Foundation of Chongqing Municipal Education Committee (No.CYS19210)
More Information
  • Received Date: March 13, 2020
  • The stability and pharmacokinetic properties of hyaluronic acid-modified asparaginase (Asp) self-assembled bionic nanocapsules (ASNCs) were preliminarily investigated. ASNCs were prepared by molecular self-assembly method to investigate their morphology, particle size, Zeta potential and antitrypsin stability. After intravenous injection of free Asp and ASNCs, rat plasma samples at different times were taken to determine Asp activity. Pharmacokinetic parameters were calculated by DAS pharmacokinetic software. The particle size of ASNCs was (99.17 ± 0.21) nm and the potential was -(13.13 ± 0.60) mV. In trypsin solution, ASNCs showed more excellent stability. The area under the activity-time curve (AUC0-48 h) of ASNCs was about 2 times higher than that of Asp; the mean residence time (MRT0-48 h) was about 1.7 times higher than that of Asp, and the bioavailability was 195% of Asp. The results showed that ASNCs could improve the stability and bioavailability of Asp against trypsin and prolong the circulation time of Asp in vivo.
  • [1]
    Zhou XY, Liu JJ. Chemical modification of Escherichia coli L-asparaginase with polyethylene glycol[J]. J China Pharm Univ(中国药科大学学报), 2000, 31(3): 230-233.
    [2]
    Huang YJ, Yang L, Li Y, et al. Pharmacokinetic study on asparaginase-evodiamine loaded core-shell lipidic nanoparticles[J]. Chin Pharmacol Bull(中国药理学通报),2019,35(9):1284-1289.
    [3]
    Shi PJ, Fang JP. Study of asparaginase in the treatment of acute lymphoblastic leukemia[J]. Chin J Pract Pediatr(中国实用儿科杂志), 2016, 31(4): 268-274.
    [4]
    Einsfeldt K, Baptista IC, Pereira JC, et al. Recombinant L-asparaginase from Zymomonas mobilis: a potential new antileukemic agent produced in Escherichia coli[J]. PLoS One, 2016, 11(6): e0156692.
    [5]
    Borek D, Kozak M, Pei JM, et al. Crystal structure of active site mutant of antileukemic L-asparaginase reveals conserved zinc-binding site[J]. FEBS J, 2014, 281(18): 4097-4111.
    [6]
    Karamitros CS, Yashchenok AM, M?hwald H, et al. Preserving catalytic activity and enhancing biochemical stability of the therapeutic enzyme asparaginase by biocompatible multilayered polyelectrolyte microcapsules[J]. Biomacromolecules, 2013, 14(12): 4398-4406.
    [7]
    Tian MD, Zhu CM, Luo C, et al. Cytotoxicity of superparamagnetic iron oxide nanoparticles modified by chitosan or sodium oleate[J]. Acad J Second Mil Med Univ(第二军医大学学报), 2014, 35(4): 366-371.
    [8]
    Ashrafi H, Amini M, Mohammadi-Samani S, et al. Nanostructure L-asparaginase-fatty acid bioconjugate: synthesis, preformulation study and biological assessment[J]. Int J Biol Macromol, 2013, 62: 180-187.
    [9]
    Chien WW, Allas S, Rachinel N, et al. Pharmacology, immunogenicity, and efficacy of a novel pegylated recombinant Erwinia chrysanthemi-derived L-asparaginase[J]. Invest New Drugs, 2014, 32(5): 795-805.
    [10]
    Sun XF, Liu T, Ling Y, et al. Advances in research of hyaluronic acid modified nanomicelles for targeting tumor therapy and drug release behavior[J]. J China Pharm Univ(中国药科大学学报), 2019,50(6):641-647.
    [11]
    He YJ, Tu TH, Su MK, et al. Facile construction of metallo-supramolecular poly(3-hexylthiophene)-block-poly(ethylene oxide) diblock copolymers via complementary coordination and their self-assembled nanostructures[J]. J Am Chem Soc, 2017, 139(11): 4218-4224.
    [12]
    Meng XW, Ha W, Cheng C, et al. Hollow nanospheres based on the self-assembly of alginate-graft-poly(ethylene glycol) and α-cyclodextrin[J]. Langmuir, 2011, 27(23): 14401-14407.
    [13]
    Stellmach B. Bestimmungsmethoden Enzyme(酶的测定方法)[M]. Beijing: China Light Industry Press, 1992: 85-88.
    [14]
    Zhou YL, Zhang M, He D, et al. Erratum: Uricase alkaline enzymosomes with enhanced stabilities and anti-hyperuricemia effects induced by favorable microenvironmental changes[J]. Sci Rep, 2017, 7: 46390.
    [15]
    Xiong HR, Zhou YL, Zhou QX, et al. Nanosomal microassemblies for highly efficient and safe delivery of therapeutic enzymes[J]. ACS Appl Mater Interfaces, 2015, 7(36): 20255-20263.
  • Related Articles

    [1]LU Ningshu, JI Tao, LU Yinglan, XU Xiyuan, GU Xiaochen, DING Yang. Drug delivery strategies and clinical research progress for encephalopathy[J]. Journal of China Pharmaceutical University, 2024, 55(5): 577-589. DOI: 10.11665/j.issn.1000-5048.2024063001
    [2]WANG Songkai, ZOU Yuchen, SUN Shipeng, YAN Zhiye, TANG Weiwei, LI Ping, LI Bin. Recent advances in mass spectrometry imaging and its application in drug research[J]. Journal of China Pharmaceutical University, 2023, 54(6): 653-661. DOI: 10.11665/j.issn.1000-5048.2023091901
    [3]Gao Zhonghao. 新型药物递送系统技术在药物研发中的应用和展望[J]. Journal of China Pharmaceutical University, 2023, 54(1): 1-4. DOI: 10.11665/j.issn.1000-5048.2023030303
    [4]XU Liu, XU Shan, XIANG Tangyong, SHA Zhengzhou, ZHANG Jian, CHEN Zhipeng. Advances in self-assembled peptide hydrogels for bone regeneration[J]. Journal of China Pharmaceutical University, 2022, 53(3): 356-364. DOI: 10.11665/j.issn.1000-5048.20220314
    [5]SHI Kangjie, CHEN Jiaxuan, LIU Xiaoxuan, PENG Ling. Self-assembling dendrimers for biomedical applications[J]. Journal of China Pharmaceutical University, 2021, 52(1): 20-30. DOI: 10.11665/j.issn.1000-5048.20210103
    [6]FENG Yang, XU Xiao, MO Ran. Advances in lymphatic targeted drug delivery system for treatment of tumor metastasis[J]. Journal of China Pharmaceutical University, 2020, 51(4): 425-432. DOI: 10.11665/j.issn.1000-5048.20200406
    [7]ZHOU Yeshu, WANG Yanmei, ZHANG Beiyuan, WU Shuaicong, YANG Lei, YIN Lifang. Research progress of inorganic nanomaterials in drug delivery system[J]. Journal of China Pharmaceutical University, 2020, 51(4): 394-405. DOI: 10.11665/j.issn.1000-5048.20200403
    [8]YANG Huizhen, MU Weiwei, LIU Yongjun, ZHANG Na. Research progress of drug delivery system based on black phosphorus in tumor diagnosis and treatment[J]. Journal of China Pharmaceutical University, 2020, 51(3): 270-276. DOI: 10.11665/j.issn.1000-5048.20200303
    [9]HAN Xiu, QI Xiaole, WU Zhenghong. Advances in self-assemblied DNA nanocages as drug delivery systems[J]. Journal of China Pharmaceutical University, 2017, 48(6): 663-669. DOI: 10.11665/j.issn.1000-5048.20170605
    [10]ZHANG Fangrong, WANG Wei. Advances of synthetic lipoproteins as drug nanovectors[J]. Journal of China Pharmaceutical University, 2016, 47(2): 148-157. DOI: 10.11665/j.issn.1000-5048.20160204
  • Cited by

    Periodical cited type(1)

    1. 石晶,冯云,包杰,樊建茹,徐桂云,范金石. 天然生物质材料的制备、性质与应用(Ⅲ)——医护两用的糖胺聚糖:透明质酸. 日用化学工业. 2022(03): 237-244 .

    Other cited types(0)

Catalog

    Article views (85) PDF downloads (494) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return