Citation: | LIU Yuying, LI Yao, YANG Qiang, CHEN Ran, LI Kailing, ZHANG Jingqing. Stability and pharmacokinetics of hyaluronic acid-modified asparaginase self-assembled biomimetic nanocapsules[J]. Journal of China Pharmaceutical University, 2020, 51(4): 461-465. DOI: 10.11665/j.issn.1000-5048.20200411 |
[1] |
Zhou XY, Liu JJ. Chemical modification of Escherichia coli L-asparaginase with polyethylene glycol[J]. J China Pharm Univ(中国药科大学学报), 2000, 31(3): 230-233.
|
[2] |
Huang YJ, Yang L, Li Y, et al. Pharmacokinetic study on asparaginase-evodiamine loaded core-shell lipidic nanoparticles[J]. Chin Pharmacol Bull(中国药理学通报),2019,35(9):1284-1289.
|
[3] |
Shi PJ, Fang JP. Study of asparaginase in the treatment of acute lymphoblastic leukemia[J]. Chin J Pract Pediatr(中国实用儿科杂志), 2016, 31(4): 268-274.
|
[4] |
Einsfeldt K, Baptista IC, Pereira JC, et al. Recombinant L-asparaginase from Zymomonas mobilis: a potential new antileukemic agent produced in Escherichia coli[J]. PLoS One, 2016, 11(6):
|
[5] |
Borek D, Kozak M, Pei JM, et al. Crystal structure of active site mutant of antileukemic L-asparaginase reveals conserved zinc-binding site[J]. FEBS J, 2014, 281(18): 4097-4111.
|
[6] |
Karamitros CS, Yashchenok AM, M?hwald H, et al. Preserving catalytic activity and enhancing biochemical stability of the therapeutic enzyme asparaginase by biocompatible multilayered polyelectrolyte microcapsules[J]. Biomacromolecules, 2013, 14(12): 4398-4406.
|
[7] |
Tian MD, Zhu CM, Luo C, et al. Cytotoxicity of superparamagnetic iron oxide nanoparticles modified by chitosan or sodium oleate[J]. Acad J Second Mil Med Univ(第二军医大学学报), 2014, 35(4): 366-371.
|
[8] |
Ashrafi H, Amini M, Mohammadi-Samani S, et al. Nanostructure L-asparaginase-fatty acid bioconjugate: synthesis, preformulation study and biological assessment[J]. Int J Biol Macromol, 2013, 62: 180-187.
|
[9] |
Chien WW, Allas S, Rachinel N, et al. Pharmacology, immunogenicity, and efficacy of a novel pegylated recombinant Erwinia chrysanthemi-derived L-asparaginase[J]. Invest New Drugs, 2014, 32(5): 795-805.
|
[10] |
Sun XF, Liu T, Ling Y, et al. Advances in research of hyaluronic acid modified nanomicelles for targeting tumor therapy and drug release behavior[J]. J China Pharm Univ(中国药科大学学报), 2019,50(6):641-647.
|
[11] |
He YJ, Tu TH, Su MK, et al. Facile construction of metallo-supramolecular poly(3-hexylthiophene)-block-poly(ethylene oxide) diblock copolymers via complementary coordination and their self-assembled nanostructures[J]. J Am Chem Soc, 2017, 139(11): 4218-4224.
|
[12] |
Meng XW, Ha W, Cheng C, et al. Hollow nanospheres based on the self-assembly of alginate-graft-poly(ethylene glycol) and α-cyclodextrin[J]. Langmuir, 2011, 27(23): 14401-14407.
|
[13] |
Stellmach B. Bestimmungsmethoden Enzyme(酶的测定方法)[M]. Beijing: China Light Industry Press, 1992: 85-88.
|
[14] |
Zhou YL, Zhang M, He D, et al. Erratum: Uricase alkaline enzymosomes with enhanced stabilities and anti-hyperuricemia effects induced by favorable microenvironmental changes[J]. Sci Rep, 2017, 7: 46390.
|
[15] |
Xiong HR, Zhou YL, Zhou QX, et al. Nanosomal microassemblies for highly efficient and safe delivery of therapeutic enzymes[J]. ACS Appl Mater Interfaces, 2015, 7(36): 20255-20263.
|