Citation: | LIU Yuhong, ZHANG Fangfang, LIU Jianxing, LIU Yue, YANG Yue, JIN Liang. Interplay between non-coding RNA and insulin signaling pathway and its clinical application[J]. Journal of China Pharmaceutical University, 2021, 52(3): 279-286. DOI: 10.11665/j.issn.1000-5048.20210303 |
[1] |
. J Clin Oncol,2016,34(35):4261-4269.
|
[2] |
Roden M,Shulman GI. The integrative biology of type 2 diabetes[J]. Nature,2019,576(7785):51-60.
|
[3] |
Rines AK,Sharabi K,Tavares CD,et al. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes[J]. Nat Rev Drug Discov,2016,15(11):786-804.
|
[4] |
Tang NN,Jiang SY,Yang YY,et al. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus[J]. Cardiovasc Ther,2018,36(4):
|
[5] |
Beltrami C,Angelini TG,Emanueli C. Noncoding RNAs in diabetes vascular complications[J]. J Mol Cell Cardiol,2015,89(
|
[6] |
Min KH,Yang WM,Lee W. Saturated fatty acids-induced miR-424-5p aggravates insulin resistance via targeting insulin receptor in hepatocytes[J]. Biochem Biophys Res Commun,2018,503(3):1587-1593.
|
[7] |
Wang L,Zhang N,Pan HP,et al. MiR-499-5p contributes to hepatic insulin resistance by suppressing PTEN[J]. Cell Physiol Biochem,2015,36(6):2357-2365.
|
[8] |
Zhao XM,Mohan R,?zcan S,et al. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells[J]. J Biol Chem,2012,287(37):31155-31164.
|
[9] |
Akerman I,Tu ZD,Beucher A,et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks[J]. Cell Metab,2017,25(2):400-411.
|
[10] |
Xu HY,Guo S,Li W,et al. The circular RNA Cdr1as,via miR-7 and its targets,regulates insulin transcription and secretion in islet cells[J]. Sci Rep,2015,5:12453.
|
[11] |
Bartel DP. MicroRNAs:genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297.
|
[12] |
Zhang FF,Ma DS,Zhao WL,et al. Obesity-induced overexpression of miR-802 impairs insulin transcription and secretion[J]. Nat Commun,2020,11(1):1822.
|
[13] |
Feng SD,Yang JH,Yao CH,et al. Potential regulatory mechanisms of lncRNA in diabetes and its complications[J]. Biochem Cell Biol,2017,95(3):361-367.
|
[14] |
Deveson IW,Hardwick SA,Mercer TR,et al. The dimensions,dynamics,and relevance of the mammalian noncoding transcriptome[J]. Trends Genet,2017,33(7):464-478.
|
[15] |
Zhang FF,Liu YH,Wang DW,et al. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation[J]. Diabetologia,2020,63(4):811-824.
|
[16] |
Chen LL,Yang L. Regulation of circRNA biogenesis[J]. RNA Biol,2015,12(4):381-388.
|
[17] |
Meng SJ,Zhou HC,Feng ZY,et al. CircRNA:functions and properties of a novel potential biomarker for cancer[J]. Mol Cancer,2017,16(1):94.
|
[18] |
Liu YJ,Liu HT,Li Y,et al. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis[J]. Theranostics,2020,10(10):4705-4719.
|
[19] |
Shan K,Liu C,Liu BH,et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation,2017,136(17):1629-1642.
|
[20] |
Pan T. Modifications and functional genomics of human transfer RNA[J]. Cell Res,2018,28(4):395-404.
|
[21] |
Ozata DM,Gainetdinov I,Zoch A,et al. PIWI-interacting RNAs:small RNAs with big functions[J]. Nat Rev Genet,2019,20(2):89-108.
|
[22] |
Zimta AA,Tigu AB,Braicu C,et al. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes[J]. Front Oncol,2020,10:389.
|
[23] |
Kulkarni RN,Brüning JC,Winnay JN,et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes[J]. Cell,1999,96(3):329-339.
|
[24] |
Hubbard SR. The insulin receptor:both a prototypical and atypical receptor tyrosine kinase[J]. Cold Spring Harb Perspect Biol,2013,5(3):
|
[25] |
Leto D,Saltiel AR. Regulation of glucose transport by insulin:traffic control of GLUT4[J]. Nat Rev Mol Cell Biol,2012,13(6):383-396.
|
[26] |
Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle[J]. Diabetologia,2015,58(1):19-30.
|
[27] |
Cervello M,Augello G,Cusimano A,et al. Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma[J]. Adv Biol Regul,2017,65:59-76.
|
[28] |
Hermida MA,Dinesh Kumar J,Leslie NR. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network[J]. Adv Biol Regul,2017,65:5-15.
|
[29] |
Ono K,Igata M,Kondo T,et al. Identification of microRNA that represses IRS-1 expression in liver[J]. PLoS One,2018,13(1):
|
[30] |
Huang F,Chen J,Wang J,et al. Palmitic acid induces MicroRNA-221 expression to decrease glucose uptake in HepG2 cells via the PI3K/AKT/GLUT4 pathway[J]. Biomed Res Int,2019,2019:8171989.
|
[31] |
Zhu H,Shyh-Chang N,Segrè AV,et al. The Lin28/let-7 axis regulates glucose metabolism[J]. Cell,2011,147(1):81-94.
|
[32] |
Teleman AA,Maitra S,Cohen SM. Drosophila lacking microRNA miR-278 are defective in energy homeostasis[J]. Genes Dev,2006,20(4):417-422.
|
[33] |
Goyal N,Sivadas A,Shamsudheen KV,et al. RNA sequencing of db/db mice liver identifies lncRNA H19 as a key regulator of gluconeogenesis and hepatic glucose output[J]. Sci Rep,2017,7(1):8312.
|
[34] |
Gao Y,Wu FJ,Zhou JC,et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells[J]. Nucleic Acids Res,2014,42(22):13799-13811.
|
[35] |
Degirmenci U,Li J,Lim YC,et al. Silencing an insulin-induced lncRNA,LncASIR,impairs the transcriptional response to insulin signalling in adipocytes[J]. Sci Rep,2019,9(1):5608.
|
[36] |
Ruan YT,Lin N,Ma Q,et al. Circulating LncRNAs analysis in patients with type 2 diabetes reveals novel genes influencing glucose metabolism and islet β-cell function[J]. Cell Physiol Biochem,2018,46(1):335-350.
|
[37] |
Cai HY,Jiang ZR,Yang XN,et al. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1[J]. Endocr J,2020,67(4):397-408.
|
[38] |
Stoll L,Sobel J,Rodriguez-Trejo A,et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions[J]. Mol Metab,2018,9:69-83.
|
[39] |
Liu YH,Hou JX,Zhang M,et al. Circ-016910 sponges miR-574-5p to regulate cell physiology and milk synthesis via MAPK and PI3K/AKT-mTOR pathways in GMECs[J]. J Cell Physiol,2020,235(5):4198-4216.
|
[40] |
LoPiccolo J,Blumenthal GM,Bernstein WB,et al. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations[J]. Drug Resist Updat,2008,11(1/2):32-50.
|
[41] |
J?ger S,Wahl S,Kr?ger J,et al. Genetic variants including markers from the exome chip and metabolite traits of type 2 diabetes[J]. Sci Rep,2017,7(1):6037.
|
[42] |
Wei FY,Suzuki T,Watanabe S,et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice[J]. J Clin Invest,2011,121(9):3598-3608.
|
[43] |
Henaoui IS,Jacovetti C,Guerra Mollet I,et al. PIWI-interacting RNAs as novel regulators of pancreatic beta cell function[J]. Diabetologia,2017,60(10):1977-1986.
|
[44] |
Lee J,Harris AN,Holley CL,et al. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism[J]. J Clin Invest,2016,126(12):4616-4625.
|
[45] |
LaPierre MP,Stoffel M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes[J]. Mol Metab,2017,6(9):1010-1023.
|
[46] |
Zhao Z,Li X,Jian D,et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus[J]. Acta Diabetol,2017,54(3):237-245.
|
[47] |
Sharma S,Mathew AB,Chugh J. miRNAs:nanomachines that micromanage the pathophysiology of diabetes mellitus[J]. Adv Clin Chem,2017,82:199-264.
|
[1] | MEI Yinliu, WU Jie. Application of nanoparticles in wound healing of diabetes[J]. Journal of China Pharmaceutical University, 2022, 53(1): 25-31. DOI: 10.11665/j.issn.1000-5048.20220104 |
[2] | WANG Jing, LIU Hongxia, CAI Dongcheng, HE Chaoyong. Advances in pancreatic β-cell protective strategies[J]. Journal of China Pharmaceutical University, 2020, 51(5): 622-627. DOI: 10.11665/j.issn.1000-5048.20200515 |
[3] | MU Jinming, LIU Yue, ZHANG Fangfang, JIN Liang. Relationship between circular RNA and type 2 diabetes and its clinical application[J]. Journal of China Pharmaceutical University, 2020, 51(3): 374-378. DOI: 10.11665/j.issn.1000-5048.20200316 |
[4] | TAO Yingjun, WU Jie, LIU Chang. Application of proteomics in diabetes and its complications[J]. Journal of China Pharmaceutical University, 2020, 51(3): 368-373. DOI: 10.11665/j.issn.1000-5048.20200315 |
[5] | LI Yongrong, CHENG Tao, WANG Yongsheng, LI Qin, GAO Bo, HE Yun, BAI Yu. Effect of extract of selenium-enriched Astragalus membranaceus on insulin resistance in streptozotocin-induced diabetic rats[J]. Journal of China Pharmaceutical University, 2018, 49(6): 739-745. DOI: 10.11665/j.issn.1000-5048.20180616 |
[6] | LI Chengye, HUANG Wenlong, QIAN Hai. Advances in the research of long-acting strategy of insulin and GLP-1 analogs[J]. Journal of China Pharmaceutical University, 2018, 49(6): 660-670. DOI: 10.11665/j.issn.1000-5048.20180604 |
[7] | XU Zhimeng, ZHU Jingjing, JIANG Zhenzhou, LOU Fengchang, WANG Tao. Hypoglycemic effects of terpenes from Fructus Corni on db/db diabetic mice[J]. Journal of China Pharmaceutical University, 2016, 47(3): 337-341. DOI: 10.11665/j.issn.1000-5048.20160315 |
[8] | ZHONG Chunmei, MA Yan, WANG Yandong, YANG Wei, HAN Zhong, SUN Jingjing, LIN Baoqin. Effect of Danhong Huayu Koufuye combined with insulin on prevention and progression of early diabetic nephropathy in rats[J]. Journal of China Pharmaceutical University, 2013, 44(6): 568-572. DOI: 10.11665/j.issn.1000-5048.20130616 |
[9] | Effects of Melatonin on the Immune Functions of Diabetic Rats Combined with Injury-induced Stress[J]. Journal of China Pharmaceutical University, 2004, (4): 71-74. |
[10] | Influences on Serum Insulin and Glucose by Different Fasting Time in Alloxan Diabetic Mice[J]. Journal of China Pharmaceutical University, 2001, (3): 59-62. |
1. |
秦怡梦,刘岩,金亮,张方方. circRNA:一种调控糖尿病病理演变的新型分子. 药物生物技术. 2024(04): 444-453 .
![]() |