Citation: | LIU Yuhong, ZHANG Fangfang, LIU Jianxing, LIU Yue, YANG Yue, JIN Liang. Interplay between non-coding RNA and insulin signaling pathway and its clinical application[J]. Journal of China Pharmaceutical University, 2021, 52(3): 279-286. DOI: 10.11665/j.issn.1000-5048.20210303 |
[1] |
. J Clin Oncol,2016,34(35):4261-4269.
|
[2] |
Roden M,Shulman GI. The integrative biology of type 2 diabetes[J]. Nature,2019,576(7785):51-60.
|
[3] |
Rines AK,Sharabi K,Tavares CD,et al. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes[J]. Nat Rev Drug Discov,2016,15(11):786-804.
|
[4] |
Tang NN,Jiang SY,Yang YY,et al. Noncoding RNAs as therapeutic targets in atherosclerosis with diabetes mellitus[J]. Cardiovasc Ther,2018,36(4):
|
[5] |
Beltrami C,Angelini TG,Emanueli C. Noncoding RNAs in diabetes vascular complications[J]. J Mol Cell Cardiol,2015,89(
|
[6] |
Min KH,Yang WM,Lee W. Saturated fatty acids-induced miR-424-5p aggravates insulin resistance via targeting insulin receptor in hepatocytes[J]. Biochem Biophys Res Commun,2018,503(3):1587-1593.
|
[7] |
Wang L,Zhang N,Pan HP,et al. MiR-499-5p contributes to hepatic insulin resistance by suppressing PTEN[J]. Cell Physiol Biochem,2015,36(6):2357-2365.
|
[8] |
Zhao XM,Mohan R,?zcan S,et al. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells[J]. J Biol Chem,2012,287(37):31155-31164.
|
[9] |
Akerman I,Tu ZD,Beucher A,et al. Human pancreatic β cell lncRNAs control cell-specific regulatory networks[J]. Cell Metab,2017,25(2):400-411.
|
[10] |
Xu HY,Guo S,Li W,et al. The circular RNA Cdr1as,via miR-7 and its targets,regulates insulin transcription and secretion in islet cells[J]. Sci Rep,2015,5:12453.
|
[11] |
Bartel DP. MicroRNAs:genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281-297.
|
[12] |
Zhang FF,Ma DS,Zhao WL,et al. Obesity-induced overexpression of miR-802 impairs insulin transcription and secretion[J]. Nat Commun,2020,11(1):1822.
|
[13] |
Feng SD,Yang JH,Yao CH,et al. Potential regulatory mechanisms of lncRNA in diabetes and its complications[J]. Biochem Cell Biol,2017,95(3):361-367.
|
[14] |
Deveson IW,Hardwick SA,Mercer TR,et al. The dimensions,dynamics,and relevance of the mammalian noncoding transcriptome[J]. Trends Genet,2017,33(7):464-478.
|
[15] |
Zhang FF,Liu YH,Wang DW,et al. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation[J]. Diabetologia,2020,63(4):811-824.
|
[16] |
Chen LL,Yang L. Regulation of circRNA biogenesis[J]. RNA Biol,2015,12(4):381-388.
|
[17] |
Meng SJ,Zhou HC,Feng ZY,et al. CircRNA:functions and properties of a novel potential biomarker for cancer[J]. Mol Cancer,2017,16(1):94.
|
[18] |
Liu YJ,Liu HT,Li Y,et al. Circular RNA SAMD4A controls adipogenesis in obesity through the miR-138-5p/EZH2 axis[J]. Theranostics,2020,10(10):4705-4719.
|
[19] |
Shan K,Liu C,Liu BH,et al. Circular noncoding RNA HIPK3 mediates retinal vascular dysfunction in diabetes mellitus[J]. Circulation,2017,136(17):1629-1642.
|
[20] |
Pan T. Modifications and functional genomics of human transfer RNA[J]. Cell Res,2018,28(4):395-404.
|
[21] |
Ozata DM,Gainetdinov I,Zoch A,et al. PIWI-interacting RNAs:small RNAs with big functions[J]. Nat Rev Genet,2019,20(2):89-108.
|
[22] |
Zimta AA,Tigu AB,Braicu C,et al. An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes[J]. Front Oncol,2020,10:389.
|
[23] |
Kulkarni RN,Brüning JC,Winnay JN,et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes[J]. Cell,1999,96(3):329-339.
|
[24] |
Hubbard SR. The insulin receptor:both a prototypical and atypical receptor tyrosine kinase[J]. Cold Spring Harb Perspect Biol,2013,5(3):
|
[25] |
Leto D,Saltiel AR. Regulation of glucose transport by insulin:traffic control of GLUT4[J]. Nat Rev Mol Cell Biol,2012,13(6):383-396.
|
[26] |
Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle[J]. Diabetologia,2015,58(1):19-30.
|
[27] |
Cervello M,Augello G,Cusimano A,et al. Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma[J]. Adv Biol Regul,2017,65:59-76.
|
[28] |
Hermida MA,Dinesh Kumar J,Leslie NR. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network[J]. Adv Biol Regul,2017,65:5-15.
|
[29] |
Ono K,Igata M,Kondo T,et al. Identification of microRNA that represses IRS-1 expression in liver[J]. PLoS One,2018,13(1):
|
[30] |
Huang F,Chen J,Wang J,et al. Palmitic acid induces MicroRNA-221 expression to decrease glucose uptake in HepG2 cells via the PI3K/AKT/GLUT4 pathway[J]. Biomed Res Int,2019,2019:8171989.
|
[31] |
Zhu H,Shyh-Chang N,Segrè AV,et al. The Lin28/let-7 axis regulates glucose metabolism[J]. Cell,2011,147(1):81-94.
|
[32] |
Teleman AA,Maitra S,Cohen SM. Drosophila lacking microRNA miR-278 are defective in energy homeostasis[J]. Genes Dev,2006,20(4):417-422.
|
[33] |
Goyal N,Sivadas A,Shamsudheen KV,et al. RNA sequencing of db/db mice liver identifies lncRNA H19 as a key regulator of gluconeogenesis and hepatic glucose output[J]. Sci Rep,2017,7(1):8312.
|
[34] |
Gao Y,Wu FJ,Zhou JC,et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells[J]. Nucleic Acids Res,2014,42(22):13799-13811.
|
[35] |
Degirmenci U,Li J,Lim YC,et al. Silencing an insulin-induced lncRNA,LncASIR,impairs the transcriptional response to insulin signalling in adipocytes[J]. Sci Rep,2019,9(1):5608.
|
[36] |
Ruan YT,Lin N,Ma Q,et al. Circulating LncRNAs analysis in patients with type 2 diabetes reveals novel genes influencing glucose metabolism and islet β-cell function[J]. Cell Physiol Biochem,2018,46(1):335-350.
|
[37] |
Cai HY,Jiang ZR,Yang XN,et al. Circular RNA HIPK3 contributes to hyperglycemia and insulin homeostasis by sponging miR-192-5p and upregulating transcription factor forkhead box O1[J]. Endocr J,2020,67(4):397-408.
|
[38] |
Stoll L,Sobel J,Rodriguez-Trejo A,et al. Circular RNAs as novel regulators of β-cell functions in normal and disease conditions[J]. Mol Metab,2018,9:69-83.
|
[39] |
Liu YH,Hou JX,Zhang M,et al. Circ-016910 sponges miR-574-5p to regulate cell physiology and milk synthesis via MAPK and PI3K/AKT-mTOR pathways in GMECs[J]. J Cell Physiol,2020,235(5):4198-4216.
|
[40] |
LoPiccolo J,Blumenthal GM,Bernstein WB,et al. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations[J]. Drug Resist Updat,2008,11(1/2):32-50.
|
[41] |
J?ger S,Wahl S,Kr?ger J,et al. Genetic variants including markers from the exome chip and metabolite traits of type 2 diabetes[J]. Sci Rep,2017,7(1):6037.
|
[42] |
Wei FY,Suzuki T,Watanabe S,et al. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice[J]. J Clin Invest,2011,121(9):3598-3608.
|
[43] |
Henaoui IS,Jacovetti C,Guerra Mollet I,et al. PIWI-interacting RNAs as novel regulators of pancreatic beta cell function[J]. Diabetologia,2017,60(10):1977-1986.
|
[44] |
Lee J,Harris AN,Holley CL,et al. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism[J]. J Clin Invest,2016,126(12):4616-4625.
|
[45] |
LaPierre MP,Stoffel M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes[J]. Mol Metab,2017,6(9):1010-1023.
|
[46] |
Zhao Z,Li X,Jian D,et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus[J]. Acta Diabetol,2017,54(3):237-245.
|
[47] |
Sharma S,Mathew AB,Chugh J. miRNAs:nanomachines that micromanage the pathophysiology of diabetes mellitus[J]. Adv Clin Chem,2017,82:199-264.
|