Citation: | HUANG Weiguo, JIANG Weikai, SHAO Yuwei, et al. Reward effect of flubromazolam and its underlying neural circuit mechanism[J]. J China Pharm Univ, 2024, 55(3): 390 − 396. DOI: 10.11665/j.issn.1000-5048.2024030401 |
Flubromazolam (Flub) is a novel psychoactive substance of benzodiazepines and the mechanism underlying its addiction still remains elusive. This study investigated the reward effect of Flub using conditioned place preference (CPP) mouse model. The neuronal activity was evaluated by c-Fos expression, and the neural circuit was tracked by virus tracing. This study also investigated the regulatory effect of neural circuits on Flub-induced reward effects through chemogenetic approach. The results showed that, at the dose of 3 mg/kg, Flub significantly increased CPP score and c-Fos expression in dopaminergic (DA) neurons of ventral tegmental area (VTA). Inhibition of VTA dopaminergic neuron activity dramatically decreased Flub-induced CPP score. Virus tracing verified GABAergic neuronal projection of medial rostrum tegmental nucleus (RMTg) to VTA dopaminergic neurons. Activation of RMTgGABA→VTADA circuit or blockade of benzodiazepine receptors (BZR) in RMTg significantly decreased Flub-induced CPP score. These results indicate that Flub produced reward effect via BZR-mediated RMTgGABA→VTADA circuit.
[1] |
Edinoff AN, Nix CA, Odisho AS, et al. Novel designer benzodiazepines: comprehensive review of evolving clinical and adverse effects[J]. Neurol Int, 2022, 14(3): 648-663. doi: 10.3390/neurolint14030053
|
[2] |
Huppertz LM, Bisel P, Westphal F, et al. Characterization of the four designer benzodiazepines clonazolam, deschloroetizolam, flubromazolam, and meclonazepam, and identification of their in vitro metabolites[J]. Forensic Toxicol, 2015, 33(2): 388-395. doi: 10.1007/s11419-015-0277-6
|
[3] |
Qian ZH, Yang HX, Liu CM. Rapid detection of designer benzodiazepine flubromazolam by GC-MS and UPLC-Q-TOF MS[J]. Chin J Anal Lab (分析试验室), 2018, 37(10): 1133-1136.
|
[4] |
U. S. Drug Enforcement Administration, Diversion Control Division. National Forensic Laboratory Information System: 2019 Annual Report. [R] Springfield, VA: U. S. Drug Enforcement Administration, 2020.
|
[5] |
U. S. Drug Enforcement Administration, Diversion Control Division. National Forensic Laboratory Information System: 2020 Annual Report. [R] Springfield, VA: U. S. Drug Enforcement Administration, 2021.
|
[6] |
U. S. Drug Enforcement Administration, Diversion Control Division. National Forensic Laboratory Information System: 2021 Annual Report. [R] Springfield, VA: U. S. Drug Enforcement Administration, 2022.
|
[7] |
Abdul K, Hikin L, Smith P, et al. Flubromazolam: detection in five post-mortem cases[J]. Med Sci Law, 2020, 60(4): 266-269. doi: 10.1177/0025802420950273
|
[8] |
Noble C, Mardal M, Bjerre Holm N, et al. In vitro studies on flubromazolam metabolism and detection of its metabolites in authentic forensic samples[J]. Drug Test Anal, 2017, 9(8): 1182-1191.
|
[9] |
Canfield JR, Kisor DF, Sprague JE. Designer benzodiazepine rat pharmacokinetics: a comparison of alprazolam, flualprazolam and flubromazolam[J]. Toxicol Appl Pharmacol, 2023, 465: 116459. doi: 10.1016/j.taap.2023.116459
|
[10] |
Huppertz LM, Moosmann B, Auwärter V. Flubromazolam–Basic pharmacokinetic evaluation of a highly potent designer benzodiazepine[J]. Drug Test Anal, 2018, 10(1): 206-211. doi: 10.1002/dta.2203
|
[11] |
Andersson M, Kjellgren A. The slippery slope of flubromazolam: experiences of a novel psychoactive benzodiazepine as discussed on a Swedish online forum[J]. Nordisk Alkohol Nark, 2017, 34(3): 217-229.
|
[12] |
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement[J]. Eur J Neurosci, 2019, 50(3): 2180-2200. doi: 10.1111/ejn.14160
|
[13] |
Tan KR, Brown M, Labouèbe G, et al. Neural bases for addictive properties of benzodiazepines[J]. Nature, 2010, 463(7282): 769-774. doi: 10.1038/nature08758
|
[14] |
Polter AM, Barcomb K, Tsuda AC, et al. Synaptic function and plasticity in identified inhibitory inputs onto VTA dopamine neurons[J]. Eur J Neurosci, 2018, 47(10): 1208-1218. doi: 10.1111/ejn.13879
|
[15] |
Wu J, Cui RS, Sun CC, et al. Reward circuits and opioid addiction: the moderating effect of the rostromedial tegmental nucleus[J]. Adv Psychol Sci (心理科学进展), 2019, 27(1): 60-69.
|
[16] |
Zhao YN, Yan YD, Wang CY, et al. The rostromedial tegmental nucleus: anatomical studies and roles in sleep and substance addictions in rats and mice[J]. Nat Sci Sleep, 2020, 12: 1215-1223. doi: 10.2147/NSS.S278026
|
[17] |
Fu R, Zuo WH, Gregor D, et al. Pharmacological manipulation of the rostromedial tegmental nucleus changes voluntary and operant ethanol self-administration in rats[J]. Alcohol Clin Exp Res, 2016, 40(3): 572-582. doi: 10.1111/acer.12974
|
[18] |
Matsui A, Williams JT. Opioid-sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons[J]. J Neurosci, 2011, 31(48): 17729-17735. doi: 10.1523/JNEUROSCI.4570-11.2011
|
[19] |
St Laurent R, Martinez Damonte V, Tsuda AC, et al. Periaqueductal gray and rostromedial tegmental inhibitory afferents to VTA have distinct synaptic plasticity and opiate sensitivity[J]. Neuron, 2020, 106(4): 624-636. e4.
|
[20] |
Khayat A, Yaka R. Activation of RMTg projections to the VTA reverse cocaine-induced molecular adaptation in the reward system[J]. Transl Psychiatry, 2024, 14(1): 40. doi: 10.1038/s41398-024-02763-9
|
[21] |
Jhou TC, Geisler S, Marinelli M, et al. The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta[J]. J Comp Neurol, 2009, 513(6): 566-596. doi: 10.1002/cne.21891
|
[22] |
Jalabert M, Bourdy R, Courtin J, et al. Neuronal circuits underlying acute morphine action on dopamine neurons[J]. Proc Natl Acad Sci U S A, 2011, 108(39): 16446-16450. doi: 10.1073/pnas.1105418108
|
[1] | MO Xianwei, ZHANG Lei, GUAN Su, YAN Jinwu, LI Jing. Advances in antidepressants based on the regulation of serotonin receptors[J]. Journal of China Pharmaceutical University, 2016, 47(6): 639-647. DOI: 10.11665/j.issn.1000-5048.20160602 |
[2] | GAN Xia, NIAN Siyun, WANG Guoping. Advances in the development of farnesoid X receptor antagonists[J]. Journal of China Pharmaceutical University, 2016, 47(5): 521-530. DOI: 10.11665/j.issn.1000-5048.20160503 |
[3] | LIU Hui, JI Xu. P2X7 receptor and renal diseases[J]. Journal of China Pharmaceutical University, 2015, 46(5): 629-634. DOI: 10.11665/j.issn.1000-5048.20150519 |
[4] | TANG Jianxing, WANG Weisheng, JI Hui, LIU Jinggen. Molecular mechanisms and function of intracellular GABAA receptor transportation[J]. Journal of China Pharmaceutical University, 2013, 44(2): 182-187. DOI: 10.11665/j.issn.1000-5048.20130216 |
[5] | Research progress of prostaglandin receptors and related drugs[J]. Journal of China Pharmaceutical University, 2010, 41(5): 385-394. |
[6] | Nogo receptor—a promising target for drug development[J]. Journal of China Pharmaceutical University, 2010, 41(4): 306-311. |
[7] | Research Advances in the Targeting of Epidermal Growth Factor Receptor[J]. Journal of China Pharmaceutical University, 2004, (3): 91-94. |
[8] | Synthesis of Progesterone Receptor Antagonist Mifepristone Derivatives[J]. Journal of China Pharmaceutical University, 1998, (1): 3+5+7-8. |
[9] | Synthesis of Metablism Product of Cloxazolam 7-Chloro-5-o-Chlorophenyl-1,3-Dihydro-1,4-Benzodiazepin-2-One[J]. Journal of China Pharmaceutical University, 1993, (3): 180-181. |
[10] | Synthesis of Progesterone Receptor Antagonist ZK98299[J]. Journal of China Pharmaceutical University, 1992, (4): 209-212. |
1. |
章琪露,聂睿哲,魏立彬,郭青龙,唐苏苏. 汉黄芩素对Aβ_(1-42)和D-半乳糖诱导的小鼠学习记忆损害的改善作用. 中国药科大学学报. 2025(02): 207-215 .
![]() |