高级检索

microRNA定量检测方法的研究进展

祝申蓉, 吴旭日, 陈依军

祝申蓉, 吴旭日, 陈依军. microRNA定量检测方法的研究进展[J]. 中国药科大学学报, 2015, 46(1): 40-49. DOI: 10.11665/j.issn.1000-5048.20150104
引用本文: 祝申蓉, 吴旭日, 陈依军. microRNA定量检测方法的研究进展[J]. 中国药科大学学报, 2015, 46(1): 40-49. DOI: 10.11665/j.issn.1000-5048.20150104
ZHU Shenrong, WU Xuri, CHEN Yijun. Current progress in quantitative detection of microRNA[J]. Journal of China Pharmaceutical University, 2015, 46(1): 40-49. DOI: 10.11665/j.issn.1000-5048.20150104
Citation: ZHU Shenrong, WU Xuri, CHEN Yijun. Current progress in quantitative detection of microRNA[J]. Journal of China Pharmaceutical University, 2015, 46(1): 40-49. DOI: 10.11665/j.issn.1000-5048.20150104

microRNA定量检测方法的研究进展

基金项目: 高等学校博士学科点专项科研基金资助项目(No.20130096120006);中央高校基本科研业务费专项资金资助项目(No.JKQZ2013024);江苏高校优势学科建设工程资助项目

Current progress in quantitative detection of microRNA

  • 摘要: 随着对microRNA(miRNA)种类、结构和生物学功能研究的不断深入,其在生物发育、代谢调控、疾病发生与治疗干预等方面的重要性受到了广泛关注。由于miRNA稳定性差、表达量低和序列差异小等特征,建立快速简便、灵敏度高、特异性强的miRNA定量检测方法对研究这类生物活性分子的功能至关重要。本文对miRNA的定量检测方法进行分析和比较,为选择合适的miRNA检测方法开展生物学功能研究提供参考和借鉴。
    Abstract: With the recent development of investigating biological functions of microRNA(miRNA), the importance of miRNA in the biological processes including developmental biology, metabolic regulation, disease progression and treatment has been well recognized. Due to its the instability, low level of expression and minor difference in sequence, more sophisticated analytical methods for rapid and easy quantitative detection of miRNA with strong specificity and high sensitivity play an important role in the study of the biological functions of miRNA. This review analyzes and compares recent quantitative methods to detect miRNA, with an attempt to provide a foundation for choosing an appropriate method to quantitatively analyze miRNA.
  • 阿哌沙班[4,5,6,7-四氢-1-(4-甲氧基苯基)-7-氧代-6-[4-(2-氧代-1-哌啶基)苯基]-1H-吡唑并[3,4-c]吡啶-3-甲酰胺,apixaban,图1]是一种可口服给药、直接、可逆、高选择性的Ⅹa因子抑制剂[12],临床上用于全髋、全膝关节置换术后静脉血栓栓塞的预防[34]。因其安全性高、不必接受监测以调整剂量及不良反应少,具有广阔的市场前景。

    Figure  1.  Chemical structure of apixaban

    目前,最新的国内外药典中均未收载阿哌沙班的质量标准,已有文献报道了阿哌沙班的有关物质检测[59],但主要侧重于分析方法的建立和方法学验证,关于阿哌沙班有关物质的系统研究与鉴定未见报道,也未见针对不同厂家制剂有关物质的比较分析报道。

    本研究建立了适用于阿哌沙班有关物质检查的UHPLC-Q-Orbitrap/MS分析方法,测定了阿哌沙班及其强制降解样品中30个有关物质的准确相对分子质量和分子式,同时结合其二级质谱特征和合成工艺分析[1012],综合解析鉴定它们的结构,可为其工艺控制和质量保障提供参考依据[1314]

    阿哌沙班片(国产市售样品:企业a~r;参比制剂:美国Pfizer公司);阿哌沙班对照品(中国食品药品检定研究院);有关物质A~L对照品(深圳博泰尔生物技术有限公司)。乙腈(色谱纯,德国Merck公司),冰醋酸、醋酸铵(色谱纯,阿拉丁试剂公司);盐酸、过氧化氢、氢氧化钠(分析纯,麦克林公司),自制超纯水。

    Vanquish Flex-Q Exactive Plus液质联用仪(美国赛默飞世尔公司);XS205DU电子天平,FE 20 pH计(瑞士梅特勒托利多公司);KQ-500DB型超声波清洗仪(昆山市超声仪器有限公司);Milli-Q Reference超纯水机(法国密理博公司)。

    Waters Xbridge C18(250 mm×4.6 mm,5 μm)色谱柱;流动相A相为30 mmol/L醋酸铵缓冲液(用冰醋酸调节pH至4.50),B相为乙腈,线性梯度洗脱(A∶B):0 min(78∶22)→2 min(78∶22)→20 min(57∶43)→27 min(12∶88)→32 min(12∶88)→32.1 min(78∶22)→40 min(78∶22),流速1.0 mL/min,检测波长280 nm;柱温40℃,进样体积10 μL。

    电喷雾离子源(ESI),正离子检测模式;鞘气流速约5.34 L/min(40 arb,1 arb = 101325 Pa),辅助气流速约9.36 L/min(10 arb),喷雾电压3.80 kV,毛细管温度320 ℃,雾化温度350 ℃,透镜电压水平(S-lens RF level)55%;一级质谱全扫描范围为m/z 100~1000;使用Full-MS/ddMS2模式获得二级质谱数据,归一化碰撞能量设为步进式20、40、60。

    取本品10片,研细,混匀,精密称取细粉适量(约相当于阿哌沙班10 mg)置20 mL量瓶中,加溶剂[乙腈-水(35∶65)]适量,超声使溶解,放冷,用溶剂稀释至刻度,摇匀,过滤,取续滤液。精密量取上述溶液适量,加溶剂定量稀释制备0.1%的自身对照溶液。

    取阿哌沙班、有关物质A~L对照品各适量,精密称定,加溶剂溶解并定量稀释制成质量浓度均约为1.0 μg/mL的溶液。

    精密称取本品细粉适量(约相当于阿哌沙班10 mg),加2.0 mol/L盐酸溶液1 mL并于40 ℃水浴放置33 h;或加1.0 mol/L氢氧化钠溶液1 mL并于40 ℃水浴放置24 h;或加30%过氧化氢溶液1 mL并于40 ℃水浴放置33 h;或于90 ℃烘箱放置7 d;或加溶剂1 mL并于90 ℃水浴放置24 h;或于照度4500 lx放置7 d;或加溶剂1 mL并于照度4500 lx放置7 d分别处理。放冷(酸碱处理溶液先中和)后,加溶剂超声溶解并稀释至20 mL,滤过,取续滤液作为阿哌沙班质量浓度约为0.5 mg/mL的强制降解试验溶液。同时进行空白溶剂试验。

    建立的挥发性流动相HPLC法,适用于阿哌沙班片有关物质检查和联用质谱鉴定。采用该方法对阿哌沙班的19批制剂(图2,选取能覆盖制剂中所有有关物质的6批作为代表)和强制降解试验溶液(图3)进行有关物质分析,选用0.1%自身对照法计算有关物质的含量,按保留时间由小到大的顺序对制剂中主要有关物质和含量大于0.1%的主要降解产物进行识别和编号,共检出分离良好的30个主要有关物质。

    Figure  2.  HPLC-UV chromatograms of representative samples of apixaban tablets
    a: Producer g; b: Producer h; c: Producer j; d: Producer k; e: Producer q; f: Producer Pfizer
    Figure  3.  HPLC-UV chromatograms of apixaban stress solutions
    a: Normal; b: 0.1% Reference; c: Alkaline; d: Oxidation; e: Acid; f: Wet heat; g: Dry heat; h: Dry light; i: Wet light; j: Blank

    19批阿哌沙班制剂中共检出19个有关物质(有关物质6~111316~1820~252729~30)。强制降解试验结果表明,本品在溶液降解状态下,对酸、碱、氧化条件比较敏感;在固体粉末干法降解状态下,对高温和光照较为稳定。强酸条件下形成6个主要降解产物(图3-e,有关物质5~617192628);强碱条件下形成5个主要降解产物(图3-c,有关物质245~617);氧化条件下形成7个主要降解产物(图3-d,有关物质136~71214~15)。

    采用Q-Orbitrap/MS测定各有关物质母离子的准确质荷比和元素组成,以及它们的二级质谱特征碎片,并通过与阿哌沙班和已知有关物质的质谱特征进行对比分析,鉴定各主要有关物质的结构。结果见表1图4

    Table  1.  Related substances identified in apixaban tablets and its stressed samples by UHPLC-Q-Orbitrap/MS
    No. tR/min Parent ion(m/z) Ion formula Dif.(×10-6) Product ions(m/z) Origins
    1 4.957 354.15570 C18H20N5O3+ −1.03 337.13354,309.13425,281.12778,253.13300,217.09698,203.11769,191.11775,130.06525,93.04529,79.01844 Dr
    2 5.695 478.20804 C25H28N5O5+ −0.96 461.18130,417.19214,288.09775,271.07101,244.10800,215.08163,199.08658,184.06310 Dr
    3 5.872 287.11365 C14H15N4O3+ −0.76 270.08600,242.09224,227.06659,215.08138,199.08670,184.06326,172.06281,125.05952,95.04979 Dr
    4 7.283 479.19235 C25H27N4O6+ −0.33 461.18173,435.20178,417.15460,405.15543,373.16574,361.16571,238.09680,199.08669,184.06293 Dr
    5/A 7.993 479.19217 C25H27N4O6+ −0.71 461.18179,435.20258,417.15460,405.15564,379.14029,373.16577,361.16562,330.14725,238.09718,199.08675,184.06303 Pr/Dr
    6/B 8.658 461.18112 C25H25N4O5+ −1.79 443.16852,417.19180,374.17343,282.12360,241.06036,199.08653,184.06300,144.06816 Pr/Dr
    7/C 9.222 446.18121 C24H24N5O4+ −2.39 429.15308,401.16098,282.12350,227.04492,185.07085,171.05521,121.03982 Pr/Dr
    8 10.022 560.25038 C30H34N5O6+ 0.03 505.21857,487.20856,470.18341,416.17093,387.18143,348.12958,254.12752,199.08675,82.06573 Pr
    9 11.188 458.18210 C25H24N5O4+ −0.40 430.18930,268.07141,242.09233,227.06895,199.07393,109.04006 Pr
    10 11.327 476.19275 C25H26N5O5+ −0.20 459.16357,430.18747,413.16397,371.15039,298.11911,252.11378,241.06096,224.11874,199.08667,185.07103,173.10721,135.05548,125.05988,95.04975 Pr
    11/D 11.527 477.22354 C25H29N6O4+ −1.97 460.19757,432.20313,416.17123,404.17154,299.15009,282.12308,238.09738,219.13611,199.08649,185.07111,130.06505,100.07608 Pr
    12 11.902 492.18680 C25H26N5O6+ −1.95 475.16025,447.19019,418.15030,404.13452,377.14792,241.06052,199.08667,185.07072 Dr
    13 12.400 515.20319 C27H27N6O5+ −1.08 488.19284,404.17267,309.13464,241.06091,199.08658,185.07127,125.06004,84.04510 Pr
    14 13.348 492.18741 C25H26N5O6+ −0.71 475.16023,447.19057,418.15032,404.13442,377.14790,241.06049,199.08659,185.07112 Dr
    15 13.825 492.18732 C25H26N5O6+ −0.90 475.16064,447.19012,418.15032,404.13452,377.14788,241.06052,199.08647,185.07079 Dr
    16 13.897 430.18738 C24H24N5O3+ 0.03 413.15930,385.16495,357.17020,282.12396,254.12938,211.05048,169.07608,155.06036,105.04514,95.04968 Pr
    17/E 14.178 478.20786 C25H28N5O5+ −1.34 460.19757,432.20282,416.17139,404.17142,399.14438,377.14865,333.13385,300.13397,238.09715,199.08658,185.07085,101.06010 Pr/Dr
    API 14.723 460.19699 C25H26N5O4+ −2.04 443.16870,415.17426,374.17432,282.12344,241.06059,199.08643,185.07082,135.05528,95.04959
    18/F 15.263 458.18124 C25H24N5O4+ −2.26 441.15524,415.17575,385.16565,372.15762,341.13919,318.08701,277.10870,249.11378,221.08209 Pr
    19 16.295 507.19867 C25H27N6O6+ 0.02 477.20041,404.17062,390.15579,373.12817,241.06075,199.08659,185.07086,95.04922 Dr
    20 16.297 460.19754 C25H26N5O4+ −0.85 443.16888,415.17413,374.17529,282.12350,241.06078,199.08655,185.07097,135.05547,95.04964 Pr
    21/G 17.203 474.21265 C26H28N5O4+ −1.97 457.18423,429.19089,296.13904,241.06065,199.08646,185.07086,156.06802,125.05978,95.04958 Pr
    22 18.140 474.21304 C26H28N5O4+ −1.13 457.18332,429.19083,296.13912,241.06070,199.08650,185.07088,156.06813,125.05976,95.04971 Pr
    23/H 18.470 474.21252 C26H28N5O4+ −2.23 457.18393,429.19186,296.13913,241.06062,199.08644,185.07079,156.06807,125.05978,95.04958 Pr
    24 18.692 474.21338 C26H28N5O4+ −0.43 457.18344,429.18976,296.13916,241.06065,199.08646,185.07080,156.06816,125.05990,95.04955 Pr
    25/I 18.790 464.14771 C24H23ClN5O3+ −1.48 447.12000,419.12436,282.12338,245.01115,203.03696,189.02141,168.06822,139.00574 Pr
    26 19.500 512.16968 C25H27ClN5O5+ 0.30 494.15887,466.16422,450.13263,414.15585,391.13983,334.09528,272.05835,225.06609,199.08661,185.07097,101.06019 Dr
    27/K 21.378 475.19714 C26H27N4O5+ −0.95 461.18185,443.16876,415.17664,282.12375,241.06076,199.08664,185.07101,172.07568,135.05542,125.05988,95.04966 Pr
    28 21.835 546.13098 C25H26Cl2N5O5+ 0.79 528.12018,500.12521,484.09381,446.07825,389.08011,268.00394,225.06563,199.08675,185.07100,101.06020 Dr
    29/L 24.480 489.21268 C27H29N4O5+ −1.16 461.18170,443.16855,417.19278,374.17368,282.12366,241.06078,227.11781,199.08656,185.07088,156.06808,135.05539,125.05988,95.04965 Pr
    30 25.358 387.15508 C20H23N2O6+ 0.02 279.64178,212.84285,147.06519,129.05489,119.04932,105.07024 Pr
    Pr: Process related substance; Dr: Degradation related substance
    下载: 导出CSV 
    | 显示表格
    Figure  4.  Chemical structures of apixaban and its related substances 130

    通过有关物质HPLC定位、DAD共轭体系比对及质谱定性(图5),确证有关物质5~71117~182123252729分别与已知有关物质A~IK~L对应。对阿哌沙班及各已知有关物质的二级质谱碎片进行裂解途径和规律分析,可以辅助未知杂质结构的推断与鉴定。

    Figure  5.  MS/MS fragmentation pathways of [M+H]+ ions of apixaban

    阿哌沙班及已知有关物质紫外共轭体系规律总结如下:(1)除有关物质A5)、D11)、E17)和F18)以外,阿哌沙班和其他有关物质均为同一母核结构,为主要发色基团,在210 nm附近有强吸收,280 nm附近有中等强度的吸收,分别为芳香族化合物π→π*跃迁所产生的E1带和E2带;(2)有关物质ADE结构中2-氧代哌啶基团的酰胺键发生水解或氨解,2-氧代哌啶环断裂开环,共轭体系发生变化,在252 nm和280 nm附近有最大吸收;(3)有关物质F的吡唑并吡啶环中吡啶环有一个碳碳双键,共轭体系也发生变化,在280 nm和325 nm附近有最大吸收。这一规律可辅助推断未知杂质是否发生母核结构的改变。

    阿哌沙班及已知有关物质二级质谱裂解规律总结如下:(1)在母离子P+中,吡唑环3位氨甲酰基/甲氧酰基等极易脱去,生成质量数为[P−45]+/[P−60]+的碎片离子峰,可据此推测3位的基团;(2)质谱中常会产生m/z 199、241、185和135的特征碎片离子峰,均与1-(4-甲氧基苯基)-吡唑并吡啶基团相关,其中特征碎片m/z 241逐级裂解得到m/z 185和135。(3)吡唑环1位和3位上连接的基团脱去后,吡唑环易断裂开环,产生m/z 282的特征碎片。(4)有关物质DE为2-氧代-1-哌啶基的酰胺键水解或氨解的化合物,开环后的碳链易断裂,产生m/z 416和404的特征碎片。

    根据HPLC保留行为、DAD及质谱信息,结合合成工艺[1012]和裂解规律,对各未知有关物质进行综合研析,鉴定其结构。

    有关物质13121415  有关物质13121415均为阿哌沙班在氧化条件下产生。有关物质1的相对分子质量比阿哌沙班小106对应元素组成C7H6O,MS/MS特征碎片仅有m/z 309.13425([P−45]+)与阿哌沙班一致,提示结构中不含1-(4-甲氧基苯基)-吡唑并吡啶母核,故推测有关物质1是由阿哌沙班吡唑环1位连接的4-甲氧基苯基的断裂而成。有关物质3的相对分子质量比阿哌沙班小173对应元素组成C11H11NO,MS/MS主要特征碎片m/z 242.09224([P−45]+)和199.08670均与阿哌沙班一致,表明结构中含1-(4-甲氧基苯基)-吡唑并吡啶母核且吡唑环的3位为氨甲酰基,推定有关物质3是由阿哌沙班吡啶环6位连接的4-(2-氧代-1-哌啶基)苯基断裂而成。有关物质121415为同分异构体且比阿哌沙班多2个O原子。三者的MS/MS特征碎片均一致且m/z 447([P−45]+)、241、185和199均与阿哌沙班一致,提示有关物质121415为阿哌沙班在氧化条件下产生的二羟基取代产物,且取代发生4-(2-氧代-1-哌啶基)苯基上。结合化学反应规律,苯环上的1位和4位均与酰胺基团的氮原子相连,而酰胺基为中等致活的邻/对位定位基团,故氧化反应易发生在活性较高的苯环上,但考虑到空间位阻的因素,综上,2个羟基取代分别为苯环的2,6-二羟基取代、3,5-二羟基取代和2,5-二羟基取代。有关物质121415的保留时间很接近,反向色谱保留行为类似,无法通过极性的大小将三者与上述的3个鉴定结构进行一一对应,需要辅助其他手段进行确证。

    有关物质24   有关物质24均为阿哌沙班在强碱条件下产生。有关物质2的相对分子质量比阿哌沙班大18对应元素组成H2O,有关物质4的相对分子质量比阿哌沙班大19,元素组成多1个H和2个O,少1个N。有关物质24的反相色谱保留较阿哌沙班弱,表明二者极性较大,结合化学反应规律,酰胺在酸或碱催化下可水解为羧酸,故推测有关物质2为四氢-氧代-吡啶的酰胺键水解成羧酸的产物,有关物质4为四氢-氧代-吡啶的酰胺键和吡唑环3位的酰胺键同时水解的产物。

    有关物质192628  有关物质192628均为阿哌沙班在强酸条件下产生,对阿哌沙班的化学结构进行分析,其2-氧代-1-哌啶基的酰胺键在强酸条件下易水解为羧基,而羧基的α-H较为活泼,故有关物质26为羧基的α-H被1个氯原子取代的产物,有关物质28为羧基的α-H被2个氯原子取代的产物;有关物质19为酰胺水解后与苯环4位相连的仲胺和强酸溶液中存在的少量亚硝酸发生反应生成N-亚硝基胺。

    有关物质89101330  有关物质89101330均为阿哌沙班制剂中检出的工艺杂质。结合合成工艺,阿哌沙班结构中2-氧代-1-哌啶基的α位活泼氢易与合成路线中残留的五氯化磷反应生成单氯代和双氯代化合物,双氯代化合物与过量的吗啉发生缩合-消除反应的同时吡唑环3位的酰胺键与甲醇钠发生酯交换得到有关物质8;单氯代化合物经过水解α位的氯原子被羟基取代而生成有关物质10,或者经过消除反应失去一分子HCl从而产生有关物质9;有关物质13为合成路线中参与环合反应的中间体反应不完全,继而与氰化钠/钾发生取代反应同时3位的酰胺键与反应釜中过量的甲酰胺发生氨解反应而生成的副产物;有关物质30的MS/MS主要特征碎片均不符合阿哌沙班及其已知有关物质的裂解规律,参考文献报道的合成工艺[12],推测有关物质30为合成路线中未转化完全而残留的中间体,即乙基-2-(5-羟基-6-氧代-1-(4-(2-氧代哌啶-1-基)苯基)-1,2,3,6-四氢吡啶-4-基)-2-氧代乙酸乙酯。

    以上结构以有关物质12913为例进行解析,质谱裂解均得到合理归属(图6)。

    Figure  6.  MS/MS fragmentation pathways of [M+H]+ ion of related substances 12, 9 and 13

    对从市场流通环节收集的19家企业(18家国内企业a~r和1家原研企业Pfizer)生产的阿哌沙班片进样测定。结果显示,19种阿哌沙班制剂中共检出19个有关物质,分别为有关物质6~111316~1820~252729~30,其中有关物质671117182123252729确证为已知有关物质B~IK~L。前期研究工作中已通过绘制阿哌沙班和各已知有关物质的线性方程,以斜率计算各有关物质的校正因子,故已知有关物质按加校正因子的主成分自身对照法计算含量,其他未知有关物质按主成分自身对照法计算含量,结果显示各杂质含量均在0.1%以下,总体质量水平优良。国产制剂之间的杂质种类和个数差异较大,但杂质含量差别较小,可能与起始原料的来源和生产工艺不同相关,且国产制剂在杂质数量和含量的水平上与原研片无明显差距。

    在建立的挥发性流动相色谱-质谱联用条件下,阿哌沙班与各有关物质得到了有效的分离,共检测到30个有关物质,其中11个为已知杂质,其余均为本研究新鉴定的未知有关物质。阿哌沙班有关物质的产生途径见图7

    Figure  7.  Generation of the related substance in apixaban tablets

    根据杂质来源,30种有关物质可分为2类,即工艺杂质(合成副产物、合成中间体)和降解杂质。有关物质61727为阿哌沙班合成工艺过程中3位的酯键或2-氧代哌啶环的酰胺键水解而产生的副产物;有关物质8910为内酰胺关环反应步骤之后2-氧代哌啶环的α位活泼氢参与反应生成的副产物;有关物质11为重结晶精制过程中的副产物,即阿哌沙班结构中2-氧代哌啶环的酰胺键与反应残留的甲酰胺发生氨解反应;有关物质13为内酰胺关环反应步骤的副产物;有关物质1620~25为反应原料中所引入的杂质参与反应的副产物;有关物质2930为未反应完全的合成中间体。

    强制降解试验表明,阿哌沙班对高温和光照相对稳定,对酸、碱和氧化剂较不稳定。阿哌沙班在酸破坏条件下3位的酰胺键和2-氧代哌啶环的酰胺键易水解,而碱破坏条件下3位的酰胺键、2-氧代哌啶环的酰胺键和四氢-氧代-吡啶的酰胺键均易水解,氧化破坏条件下,氧化位点主要在与2-氧代哌啶环相连的苯环上。强制降解产生的有关物质56717在阿哌沙班制剂中均检出,表明在合成过程中需严格控制酸碱试剂的残留以及反应温度来控制杂质的产生,同时在贮存的过程中避免潮湿,在密封干燥处保存。

    欢迎订阅 2025年《中国药科大学学报》
    国内刊号:CN 32-1157/R                     ISSN:1000-5048 国内邮发代号:28-115                      定 价:40元/期,全年240元 地 址:南京市童家巷24号                    邮政编码:210009 电 话:025-83271566                       https://jcpu.cpu.edu.cn

  • [1] Dong H,Lei J,Ding L,et al.MicroRNA:function,detection,and bioanalysis[J].Chem Rev,2013,113(8):6207-6233.
    [2] Lewis BP,Burge CB,Bartel DP.Conserved seed pairing,often flanked by adenosines,indicates that thousands of human genes are microRNA targets[J].Cell,2005,120(1):15-20.
    [3] Lee YS,Dutta A.MicroRNA in cancer[J].Annu Rev Pathol,2009,4:199-227.
    [4] Chen JF,Murchison EP,Tang R,et al.Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure[J].Proc Natl Acad Sci U S A,2008,105(6):2111-2116.
    [5] Lukiw WJ,Zhao Y,Cui JG.An NF-kappaB-sensitive microRNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells[J].J Biol Chem,2008,283(46):31315-31322.
    [6] de Planell-Saguer M,Rodicio MC.Detection methods for microRNA in clinic practice[J].Clin Biochem,2013,46(10/11):869-878.
    [7] Cissell KA,Shrestha S,Deo SK.MicroRNA detection:challenges for the analytical chemist[J].Anal Chem,2007,79(13):4754-4761.
    [8] Várallyay E, Burgyán J, Havelda Z. MicroRNA detection by northern blotting using locked nucleic acid probes[J].Nat Protoc,2008,3(2):190-196.
    [9] Pall GS,Codony-Servat C,Byrne J,et al.Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA,miRNA and piRNA by northern blot[J].Nucleic Acids Res,2007,35(8):e60.
    [10] Li W,Ruan K.MicroRNA detection by microarray[J].Anal Bioanal Chem,2009,394(4):1117-1124.
    [11] Wang B,Xi Y.Challenges for MicroRNA Microarray Data Analysis[J].Microarrays,2013,2(2),doi: 10.3390/microarrays2020034.
    [12] Liu CG,Calin GA,Volinia S,et al.MicroRNA expression profiling using microarrays[J].Nat Protoc,2008,3(4):563-578.
    [13] Krichevsky AM,King KS,Donahue CP,et al.A microRNA array reveals extensive regulation of microRNA during brain development[J].RNA,2003,9(10):1274-1281.
    [14] Thomson JM,Parker J,Perou CM,et al.A custom microarray platform for analysis of microRNA gene expression[J].Nat Methods,2004,1(1):47-53.
    [15] Shingara J,Keiger K,Shelton J,et al.An optimized isolation and labeling platform for accurate microRNA expression profiling[J].RNA,2005,11(9):1461-1470.
    [16] Pritchard CC,Cheng HH,Tewari M.MicroRNA profiling:approaches and considerations[J].Nat Rev Genet,2012,13(5):358-369.
    [17] Fang S,Lee HJ,Wark AW,et al.Attomole microarray detection of microRNA by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions[J].J Am Chem Soc,2006,128(43):14044-14046.
    [18] Schmittgen TD,Lee EJ,Jiang J,et al.Real-time PCR quantification of precursor and mature microRNA[J].Methods,2008,44(1):31-38.
    [19] Yan J, Zhang N, Qi C, et al. One-step real time RT-PCR for detection of microRNA[J].Talanta,2013,110:190-195.
    [20] Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR,how to use it and what is available[J].Methods,2010,50(4):244-249.
    [21] Raymond CK,Roberts BS,Garrett-Engele P,et al.Simple,quantitative primer-extension PCR assay for direct monitoring of microRNA and short-interfering RNA[J].RNA,2005,11(11):1737-1744.
    [22] Reichenstein I, Aizenberg N, Goshen M, et al. A novel qPCR assay for viral encoded microRNA[J].J Virol Methods,2010,163(2):323-328.
    [23] Ro S,Park C,Jin J,et al.A PCR-based method for detection and quantification of small RNA[J].Biochem Biophys Res Commun,2006,351(3):756-763.
    [24] Mou G,Wang K,Xu D,et al.Evaluation of three RT-qPCR-based miRNA detection methods using seven rice miRNA[J].Biosci Biotechnol Biochem,2013,77(6):1349-1353.
    [25] Van Ness J,Van Ness LK,Galas DJ.Isothermal reactions for the amplification of oligonucleotides[J].Proc Natl Acad Sci U S A,2003,100(8):4504-4509.
    [26] Asiello PJ,Baeumner AJ.Miniaturized isothermal nucleic acid amplification,a review[J].Lab Chip,2011,11(8):1420-1430.
    [27] Jia H,Li Z,Liu C,et al.Ultrasensitive detection of microRNA by exponential isothermal amplification[J].Angew Chem Int Ed Engl,2010,49(32):5498-5501.
    [28] Zhang Y,Zhang CY.Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor[J].Anal Chem,2011,84(1):224-231.
    [29] Wang K,Zhang K,Lv Z,et al.Ultrasensitive detection of microRNA with isothermal amplification and a time-resolved fluorescence sensor[J].Biosens Bioelectron,2014,57:91-95.
    [30] Liu YQ,Zhang M,Yin BC,et al.Attomolar ultrasensitive microRNA detection by DNA-scaffolded silver-nanocluster probe based on isothermal amplification[J].Anal Chem,2012,84(12):5165-5169.
    [31] Wang GL,Zhang CY.Sensitive detection of microRNA with hairpin probe-based circular exponential amplification assay[J].Anal Chem,2012,84(16):7037-7042.
    [32] Bi S,Cui Y,Li L.Dumbbell probe-mediated cascade isothermal amplification:a novel strategy for label-free detection of microRNA and its application to real sample assay[J].Anal Chim Acta,2013,760:69-74.
    [33] Wang XP,Yin BC,Wang P,et al.Highly sensitive detection of microRNA based on isothermal exponential amplification-assisted generation of catalytic G-quadruplex DNAzyme[J].Biosens Bioelectron,2013,42:131-135.
    [34] Kobori T,Takahashi H.Expanding possibilities of rolling circle amplification as a biosensing platform[J].Anal Sci,2014,30(1):59-64.
    [35] Jonstrup SP,Koch J,Kjems J.A microRNA detection system based on padlock probes and rolling circle amplification[J].RNA,2006,12(9):1747-1752.
    [36] Cheng Y,Zhang X,Li Z,et al.Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification[J].Angew Chem Int Ed Engl,2009,48(18):3268-3272.
    [37] Mashimo Y,Mie M,Suzuki S,et al.Detection of small RNA molecules by a combination of branched rolling circle amplification and bioluminescent pyrophosphate assay[J].Anal Bioanal Chem,2011,401(1):221-227.
    [38] Zhou Y,Huang Q,Gao J,et al.A dumbbell probe-mediated rolling circle amplification strategy for highly sensitive microRNA detection[J].Nucleic Acids Res,2010,38(15):e156.
    [39] Wen Y,Xu Y,Mao X,et al.DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva[J].Anal Chem,2012,84(18):7664-7669.
    [40] Liu H,Li L,Duan L,et al.High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification[J].Anal Chem,2013,85(16):7941-7947.
    [41] Chapin SC, Doyle PS. Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification[J].Anal Chem,2011,83(18):7179-7185.
    [42] Deng R, Tang L, Tian Q, et al. Toehold-initiated rolling circle amplification for visualizing individual microRNA in situ in single cells[J].Angew Chem Int Ed Engl,2014,53(9):2389-2393.
    [43] Zhang LR,Zhu G,Zhang CY.Homogeneous and label-free detection of microRNA using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification[J].Anal Chem,2014,86(13):6703-6709.
    [44] Cui L,Zhu Z,Lin N,et al.A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification:a dual-amplification strategy for sensitive and selective microRNA detection[J].Chem Commun,2014,50(13):1576-1578.
    [45] Yao B,Liu Y,Tabata M,et al.Sensitive detection of microRNA by chronocoulometry and rolling circle amplification on a gold electrode[J].Chem Commun,2014,50(68):9704-9706.
    [46] Gerasimova YV,Kolpashchikov DM.Enzyme-assisted target recycling(EATR)for nucleic acid detection[J].Chem Soc Rev,2014,43(17):6405-6438.
    [47] Chan SH,Stoddard BL,Xu SY.Natural and engineered nicking endonucleases-from cleavage mechanism to engineering of strand-specificity[J].Nucleic Acids Res,2011,39(1):1-18.
    [48] Dong H, Hao K, Tian Y, et al. Label-free and ultrasensitive microRNA detection based on novel molecular beacon binding readout and target recycling amplification[J].Biosens Bioelectron,2014,153:377-383.
    [49] Yin BC,Liu YQ,Ye BC.Sensitive detection of microRNA in complex biological samples via enzymatic signal amplification using DNA polymerase coupled with nicking endonuclease[J].Anal Chem,2013,85(23):11487-11493.
    [50] Zou B,Ma Y,Wu H,et al.Ultrasensitive DNA detection by cascade enzymatic signal amplification based on Afu flap endonuclease coupled with nicking endonuclease[J].Angew Chem Int Ed Engl,2011,50(32):7395-7398.
    [51] Yin BC, Liu YQ, Ye BC. One-step, multiplexed fluorescence detection of microRNA based on duplex-specific nuclease signal amplification[J].J Am Chem Soc,2012,134(11):5064-5067.
    [52] Lin X,Zhang C,Huang Y,et al.Backbone-modified molecular beacons for highly sensitive and selective detection of microRNA based on duplex specific nuclease signal amplification[J].Chem Commun,2013,49(65):7243-7245.
    [53] Huang RC,Chiu WJ,Li YJ,et al.Detection of microRNA in tumor cells using exonuclease III and graphene oxide-regulated signal amplification[J].ACS Appl Mater Interfaces,2014,6(24):21780-21787.
    [54] Cui L,Lin X,Lin N,et al.Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method[J].Chem Commun,2012,48(2):194-196.
    [55] Wang M,Fu Z,Li B,et al.One-step,ultrasensitive,and electrochemical assay of microRNA based on T7 exonuclease assisted cyclic enzymatic amplification[J].Anal Chem,2014,86(12):5606-5610.
    [56] Crew E,Tessel MA,Rahman S,et al.MicroRNA conjugated gold nanoparticles and cell transfection[J].Anal Chem,2012,84(1):26-29.
    [57] Lee H,Park JE,Nam JM.Bio-barcode gel assay for microRNA[J].Nat Commun,2014,5:3367.
    [58] Fan Y,Chen X,Trigg AD,et al.Detection of microRNA using target-guided formation of conducting polymer nanowires in nanogaps[J].J Am Chem Soc,2007,129(17):5437-5443.
    [59] Yin H,Zhou Y,Zhang H,et al.Electrochemical determination of microRNA-21 based on graphene,LNA integrated molecular beacon,AuNPs and biotin multifunctional bio bar codes and enzymatic assay system[J].Biosens Bioelectron,2012,33(1):247-253.
    [60] Alhasan AH,Kim DY,Daniel WL,et al.Scanometric microRNA array profiling of prostate cancer markers using spherical nucleic acid-gold nanoparticle conjugates[J].Anal Chem,2012,84(9):4153-4160.
计量
  • 文章访问数:  1974
  • HTML全文浏览量:  7
  • PDF下载量:  4171
  • 被引次数: 0
出版历程
  • 刊出日期:  2015-02-24

目录

/

返回文章
返回
x 关闭 永久关闭