• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

脂质体注射剂的应用现状及其发展趋势

项心妍, 杜爽, 丁杨, 周建平

项心妍, 杜爽, 丁杨, 周建平. 脂质体注射剂的应用现状及其发展趋势[J]. 中国药科大学学报, 2020, 51(4): 383-393. DOI: 10.11665/j.issn.1000-5048.20200402
引用本文: 项心妍, 杜爽, 丁杨, 周建平. 脂质体注射剂的应用现状及其发展趋势[J]. 中国药科大学学报, 2020, 51(4): 383-393. DOI: 10.11665/j.issn.1000-5048.20200402
XIANG Xinyan, DU Shuang, DING Yang, ZHOU Jianping. Application and development of liposome injection[J]. Journal of China Pharmaceutical University, 2020, 51(4): 383-393. DOI: 10.11665/j.issn.1000-5048.20200402
Citation: XIANG Xinyan, DU Shuang, DING Yang, ZHOU Jianping. Application and development of liposome injection[J]. Journal of China Pharmaceutical University, 2020, 51(4): 383-393. DOI: 10.11665/j.issn.1000-5048.20200402

脂质体注射剂的应用现状及其发展趋势

Application and development of liposome injection

  • 摘要: 脂质体注射剂是应用纳米技术增强药物治疗效果并降低药物毒性最成功的注射剂之一,自第1个载有阿霉素的脂质体注射剂上市以来,涉及脂质体的新技术与新产品不断涌现。本文总结了Stealth脂质体技术和阳离子脂质体技术的原理与研究进展,从制剂学角度分析了已经上市的脂质体产品的结构功能特性与临床应用优势,介绍了当前新型脂质体的研究热点,以及分析了国内外脂质体注射剂的监管现状,以期为脂质体注射剂的研发、临床转化和监管提供理论参考。
    Abstract: Liposome injection is one of the most successful special injections that use nanotechnology to enhance drug efficacy and reduce accompanied toxicity. New liposomes with special structures and functions have emerged since the first liposome injection containing doxorubicin was marketed. This review summarized the principles and research progress of Stealth liposome technology and cationic liposome technology, analyzed the structural and functional characteristics and clinical application advantages of liposome products that have been marketed from the perspective of pharmacology, introduced current research hotspots of new liposomes, and analyzed the current regulatory status of liposome injection at home and abroad, thereby providing theoretical reference for the research and development(R&D), clinical translation and supervision of liposome injection.
  • [1] D'Mello SR, Cruz CN, Chen ML, et al. The evolving landscape of drug products containing nanomaterials in the United States [J]. Nat Nanotechnol, 2017, 12(6):523-529.
    [2] Lee W, Im HJ. Theranostics based on liposome:looking back and forward [J]. Nucl Med Mol Imaging, 2019, 53(4):242-246.
    [3] Fan Y, Zhang Q. Development of liposomal formulations:from concept to clinical investigations [J]. Asian J Pharm Sci, 2013, 8(2):81-87.
    [4] Schmitt CJ, Dietrich S, Ho AD, et al. Replacement of conventional doxorubicin by pegylated liposomal doxorubicin is a safe and effective alternative in the treatment of non-Hodgkin's lymphoma patients with cardiac risk factors [J]. Ann Hematol, 2012, 91(3):391-397.
    [5] Arantseva D, Vodovozova E. Platinum-based antitumor drugs and their liposomal formulations in clinical trials [J]. Russ J Bioorg Chem, 2018, 44(6):619-630.
    [6] Bulbake U, Doppalapudi S, Kommineni N, et al. Liposomal formulations in clinical use:an updated review [J]. Pharmaceutics, 2017, 9(2):12.
    [7] Mohamed M, Abu Lila AS, Shimizu T, et al. PEGylated liposomes:immunological responses [J]. Sci Technol Adv Mater, 2019, 20(1):710-724.
    [8] Lila ASA, Uehara Y, Ishida T, et al. Application of polyglycerol coating to plasmid DNA lipoplex for the evasion of the accelerated blood clearance phenomenon in nucleic acid delivery [J]. Eur J Pharm Sci, 2014, 103(2):557-566.
    [9] Mima Y, Lila ASA, Shimizu T, et al. Ganglioside inserted into PEGylated liposome attenuates anti-PEG immunity [J]. J Control Release, 2017, 250:20-26.
    [10] Lila ASA, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon:clinical challenge and approaches to manage [J]. J Control Release, 2013, 172(1):38-47.
    [11] Mészáros T, Csincsi áI, Uzonyi B, et al. Factor H inhibits complement activation induced by liposomal and micellar drugs and the therapeutic antibody rituximab in vitro [J]. Nanomed Nanotechnol, 2016, 12(4):1023-1031.
    [12] Rietwyk S, Peer D. Next-generation lipids in RNA interference therapeutics [J]. ACS Nano, 2017, 11(8):7572-7586.
    [13] Barba AA, Bochicchio S, Dalmoro A, et al. Lipid delivery systems for nucleic-acid-based drugs:from production to clinical applications [J]. Pharmaceutics, 2019, 11(8):360.
    [14] Chen Z, Zhang T, Wu B, et al. Insights into the therapeutic potential of hypoxia-inducible factor-1α small interfering RNA in malignant melanoma delivered via folate-decorated cationic liposomes [J]. Int J Nanomed, 2016, 11:991-1002.
    [15] Wang Y, Gao F, Jiang X, et al. Co-delivery of gemcitabine and Mcl-1 SiRNA via cationic liposome-based system enhances the efficacy of chemotherapy in pancreatic cancer [J]. J Biomed Nanotechnol, 2019, 15(5):966-978.
    [16] Jabir NR, Anwar K, Firoz CK, et al. An overview on the current status of cancer nanomedicines [J]. Curr Med Res Opin, 2018, 34(5):911-921.
    [17] Kapoor M, Lee SL, Tyner KM. Liposomal drug product development and quality:current US experience and perspective [J]. AAPS J, 2017, 19(3):1-10.
    [18] He H, Yuan D, Wu Y, et al. Pharmacokinetics and pharmacodynamics modeling and simulation systems to support the development and regulation of liposomal drugs [J]. Pharmaceutics, 2019, 11(3):110.
    [19] Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, et al. Nanomedicine review:clinical developments in liposomal applications [J]. Cancer Nanotechnol, 2019, 10(1):11.
    [20] Harrison TS, Lyseng-Williamson KA. Vincristine sulfate liposome injection [J]. BioDrugs, 2013, 27(1):69-74.
    [21] Stathopoulos GP, Antoniou D, Dimitroulis J, et al. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer[J]. Cancer Chemother Pharmacol, 2011, 68(4):945-950.
    [22] Franze S, Selmin F, Samaritani E, et al. Lyophilization of liposomal formulations:still necessary, still challenging [J]. Pharmaceutics, 2018, 10(3):139.
    [23] Akinc A, Maier MA, Manoharan M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J]. Nat Nanotechnol, 2019, 14(12):1084-1087.
    [24] Gazzano E, Rolando B, Chegaev K, et al. Folate-targeted liposomal nitrooxy-doxorubicin:an effective tool against P-glycoprotein-positive and folate receptor-positive tumors [J]. J Control Release, 2018, 270:37-52.
    [25] Zheng C, Ma C, Bai E, et al. Transferrin and cell-penetrating peptide dual-functioned liposome for targeted drug delivery to glioma [J]. Int J Clin Exp Med, 2015, 8(2):1658-1668.
    [26] Sercombe L, Veerati T, Moheimani F, et al. Advances and challenges of liposome assisted drug delivery [J]. Front Pharmacol, 2015, 6:286.
    [27] Eloy JO, Petrilli R, Trevizan LNF, et al. Immunoliposomes:a review on functionalization strategies and targets for drug delivery [J]. Colloids Surf, B, 2017, 159:454-467.
    [28] Arabi L, Badiee A, Mosaffa F, et al. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin [J]. J Control Release, 2015, 220:275-286.
    [29] Espelin CW, Leonard SC, Geretti E, et al. Dual HER2 targeting with trastuzumab and liposomal encapsulated doxorubicin (MM-302) demonstrates synergistic antitumor activity in breast and gastric cancer [J]. Cancer Res, 2016, 76(6):1517-1527.
    [30] Merino M, Zalba S, Garrido MJ. Immunoliposomes in clinical oncology:state of the art and future perspectives [J]. J Control Release, 2018, 275:162-176.
    [31] Munster P, Krop IE, LoRusso P, et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer:a phase 1 dose-escalation study [J]. Br J Cancer, 2018, 119(9):1086-1093.
    [32] Dou Y, Hynynen K, Allen C. To heat or not to heat:Challenges with clinical translation of thermosensitive liposomes [J]. J Control Release, 2017, 249:63-73.
    [33] Dicheva BM, ten Hagen TL, Schipper D, et al. Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes [J]. J Control Release, 2014, 195:37-48.
    [34] Dou YN, Zheng J, Foltz WD, et al. Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice [J]. J Control Release, 2014, 178:69-78.
    [35] Cheng Z, Yao K, Liu W, et al. Preparation and characterization of composite delivery system of paclitaxel-loaded temperature sensitive liposome and siRNA-loaded gold nanostar [J]. J China Pharm Univ(中国药科大学学报), 2017, 48(4):445-452.
    [36] Alvarez‐Lorenzo C, Bromberg L, Concheiro A. Light‐sensitive intelligent drug delivery systems [J]. Photochem Photobiol, 2009, 85(4):848-860.
    [37] Miranda D, Lovell JF. Mechanisms of light‐induced liposome permeabilization [J]. Bioeng Transl Med, 2016, 1(3):267-276.
    [38] Luo D, Carter KA, Razi A, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release [J]. Biomaterials, 2016, 75:193-202.
    [39] Xu H, Paxton JW, Wu Z. Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug [J]. Pharm Res, 2015, 32(7):2428-2438.
    [40] Kanamala M, Wilson WR, Yang M, et al. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery:a review [J]. Biomaterials, 2016, 85:152-167.
    [41] Zhao Y, Ren W, Zhong T, et al. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity [J]. J Control Release, 2016, 222:56-66.
    [42] Chang M, Lu S, Zhang F, et al. RGD-modified pH-sensitive liposomes for docetaxel tumor targeting [J]. Colloids Surf B, 2015, 129:175-182.
    [43] Chi Y, Yin X, Sun K, et al. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models [J]. J Control Release, 2017, 261:113-125.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-19
  • 刊出日期:  2020-08-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭