• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

化学-光热联合治疗的靶向铂药纳米微球的构建及体外评价

唐瑾, 王宇, 杨岁, 孙玉

唐瑾, 王宇, 杨岁, 孙玉. 化学-光热联合治疗的靶向铂药纳米微球的构建及体外评价[J]. 中国药科大学学报, 2021, 52(6): 684-691. DOI: 10.11665/j.issn.1000-5048.20210605
引用本文: 唐瑾, 王宇, 杨岁, 孙玉. 化学-光热联合治疗的靶向铂药纳米微球的构建及体外评价[J]. 中国药科大学学报, 2021, 52(6): 684-691. DOI: 10.11665/j.issn.1000-5048.20210605
TANG Jin, WANG Yu, YANG Sui, SUN Yu. Construction and in vitro evaluation of targeted cisplatin-loaded nanoparticles for chemo-photothermal cancer therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 684-691. DOI: 10.11665/j.issn.1000-5048.20210605
Citation: TANG Jin, WANG Yu, YANG Sui, SUN Yu. Construction and in vitro evaluation of targeted cisplatin-loaded nanoparticles for chemo-photothermal cancer therapy[J]. Journal of China Pharmaceutical University, 2021, 52(6): 684-691. DOI: 10.11665/j.issn.1000-5048.20210605

化学-光热联合治疗的靶向铂药纳米微球的构建及体外评价

基金项目: 安徽省高校科学研究资助项目(No.KJ2020A0613);皖南医学院第三批学术和技术带头人及后备人选资助项目(No.201908)

Construction and in vitro evaluation of targeted cisplatin-loaded nanoparticles for chemo-photothermal cancer therapy

Funds: This study was supported by the Scientific Research Project of Universities in Anhui Province (No. KJ2020A0613); and the Foundation for the Third Batch of Academic and Technical Leaders and Reserve Candidates of Wannan Medical College (No.201908)
  • 摘要: 为提高顺铂的治疗效果并减少副作用,构建了一种具有化学-光热联合疗效的靶向铂药递送体系。以聚乙二醇-聚乳酸共聚物为载体,采用超声乳化法制备负载顺铂和光敏剂吲哚菁绿的纳米微球,再由西妥昔单抗进行表面修饰,从而制备西妥昔单抗修饰的近红外活化的载药纳米微球(CPINPs)。通过表征平均粒径、Zeta 电位、单抗偶联率、光热效应等考察其理化性质;通过激光共聚焦显微镜测定体外细胞摄取情况;通过CCK8实验评价体外抗肿瘤活性。结果表明,所制备的CPINPs纳米微球平均粒径为(263.9 ± 3.73) nm,多分散指数为0.18 ± 0.03,Zeta电位为-(23.43 ± 0.42) mV,单抗偶联率为(44.0 ± 1.72)%;体外光热实验显示,经近红外光照射后的CPINPs会产生导致肿瘤细胞死亡的光热效应;体外细胞摄取实验结果表明,近红外光对细胞摄取有促进作用,A549细胞会选择性地摄取更多受近红外照射过的CPINPs;体外细胞毒性实验表明,近红外光照射处理的CPINPs具有化学-光热联合治疗效果,其抑制A549细胞增殖的能力高过游离顺铂和无光照处理组,给药24 h的IC50为(8.67 ± 0.04) μmol/L。实验结果表明,本研究构建的多功能给药系统有望成为一种更为高效的肺癌靶向治疗方法。
    Abstract: To improve the therapeutic effect of cisplatin and reduce its side effects, a multifunctional drug delivery system with targeted and chemo-photothermal effect was constructed.Using polyethylene glycol polylactic acid block copolymer as a carrier, nanoparticles loaded with antitumor drug cisplatin and photosensitizer indocyanine green were prepared by ultrasonic emulsification, and the surface was then modified by cetuximab to prepare cetuximab-decorated and near-infrared (NIR)-activated nanoparticles (CPINPs).The physicochemical properties were characterized by mean particle size, Zeta potential, mAb conjugating rate and photothermal effect; the in vitro cell uptake was measured by laser confocal microscopy; and the in vitro antitumor activity was evaluated by CCK8 assay.The results indicated that CPINPs had mean particle diameter of (263.9 ± 3.73) nm, polydispersity index of 0.18 ± 0.03, Zeta potential of -(23.43 ± 0.42) mV, and cetuximab conjugating rate of (44.0 ± 1.72)%.The in vitro photothermal experiments showed that CPINPs upon NIR irradiation induced a photothermal effect, thus destroying the tumor cells. The in vitro cell uptake experiments demonstrated that NIR irradiation could promote cell uptake, and that more CPINPs were effectively internalized into A549 cells. The in vitro cytotoxicity test indicated that CPINPs treated with NIR irradiation had the effect of combined chemo-photothermal therapy, leading to higher cytotoxicity than that of free cisplatin or treatment without NIR, with IC50 values being (8.67 ± 0.04) μmol/L for 24 h incubation.To sumup the multifunctional drug delivery system constructed in the current work expected to be a more efficient targeted therapy strategy for lung cancer.
  • [1] . Prog Mater Sci,2020,107:100599.
    [2] Yoo J,Park C,Yi G,et al. Active targeting strategies using biological ligands for nanoparticle drug delivery systems[J]. Cancers,2019,11(5):640.
    [3] Huang S,Shi M,He Y,et al. Construction an in vitro evaluation of DC-targeted aptamer-modified Pseudomonas aeruginosa DNA vaccine delivery system[J]. J China Pharm Univ (中国药科大学学报),2019,50:743-752.
    [4] Zhao Z,Ukidve A,Kim J,et al. Targeting strategies for tissue-specific drug delivery[J]. Cell,2020,181(1):151-167.
    [5] Marques AC,Costa PJ,Velho S,et al. Functionalizing nanoparticles with cancer-targeting antibodies:a comparison of strategies[J]. J Control Release,2020,320:180-200.
    [6] Wong SF. Cetuximab:an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer[J]. Clinical Therapeutics,2005,27(6):684-694.
    [7] Sabra R,Billa N,Roberts CJ. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer[J]. Int J Pharm,2019,572:118775.
    [8] Santos EDS,Nogueira KAB,Fernandes LCC,et al. EGFR targeting for cancer therapy:pharmacology and immunoconjugates with drugs and nanoparticles[J]. Int J Pharmaceut,2021,592:120082.
    [9] Mirrahimi M,Abed Z,Beik J,et al. A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy[J]. Pharmacol Res,2019,143:178-185.
    [10] Yu L,Dong A,Guo R,et al. DOX/ICG coencapsulated liposome-coated thermosensitive nanogels for NIR-triggered simultaneous drug release and photothermal effect[J]. ACS Biomater Sci Eng,2018,4(7):2424-2434.
    [11] Duan LQ,Liu T,Chen T. Near-infrared laser-triggered drug release in a tellurium nanosystem for simultaneous chemo-photothermal cancer therapy[J]. Biomater Sci,2021,9(5):1767-1778.
    [12] El-sherbiny RH,Hassan MM,El-Hossary WH,et al. Folate-targeted polymeric nanoparticles for efficient dual (chemo-photothermal) therapy of oral squamous carcinoma[J]. Int J Polym Mater Po,2020,70(6):414-424.
    [13] Nam J,Son S,Ochyl LJ,et al. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer[J]. Nat Commun,2018,9(1):1074.
    [14] Egloff-Juras C,Bezdetnaya L,Dolivet G,et al. NIR fluorescence-guided tumor surgery:new strategies for the use of indocyanine green[J]. Int J Nanomedicine,2019,14:7823-7838.
    [15] Sánchez-Ramírez DR,Domínguez-Ríos R,Juárez J,et al. Biodegradable photoresponsive nanoparticles for chemo-,photothermal- and photodynamic therapy of ovarian cancer[J]. Mater Sci Eng C Mater Biol Appl,2020,116:111196.
    [16] Wang HJ,Williams GR,Xie XT,et al. Stealth polydopamine-based nanoparticles with red blood cell membrane for the chemo-photothermal therapy of cancer[J]. ACS Applied Bio Materials,2020,3(4):2350-2359.
    [17] Dai QX,Ren E,Xu DZ,et al. Indocyanine green-based nanodrugs:a portfolio strategy for precision medicine[J]. Prog Nat Sci-Mater,2020,30(5):577-588.
    [18] Wheate NJ,Walker S,Craig GE,et al. The status of platinum anticancer drugs in the clinic and in clinical trials[J]. Dalton Trans,2010,39(35):8113-8127.
    [19] Pinzani V,Bressolle F,Haug I,et al. Cisplatin-induced renal toxicity and toxicity-modulating strategies-a review[J]. Cancer Chemoth Pharm,1994,35(1):1-9.
    [20] Chang MH,Pai CL,Chen YC,et al. Enhanced antitumor effects of epidermal growth factor receptor targetable cetuximab-conjugated polymeric micelles for photodynamic therapy[J]. Nanomaterials,2018,8(2):121.
    [21] Wang Y,Zhang XM,Sun Y,et al. Cetuximab-decorated and NIR-activated nanoparticles based on Platinum(IV)-prodrug:Preparation,characterization and in-vitro anticancer activity in epidermoid carcinoma cells[J]. Iran J Pharm Res,2021,20(1):371-383.
    [22] Liao WS,Ho Y,Lin YW,et al. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite[J]. Acta Biomater,2019,86:395-405.
    [23] Mato E,Puras G,Bell O,et al. Selective antitumoral effect of sorafenib loaded PLGA nanoparticles conjugated with cetuximab on undifferentiated anaplastic thyroid carcinoma cells[J]. J Nanomed Nanotechnol,2015,6(3):1000281.
    [24] Qian Y,Qiu M,Wu Q,et al. Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles[J]. Sci Rep,2014,4:7490.
    [25] Chen Y,Liu G,Guo L,et al. Enhancement of tumor uptake and therapeutic efficacy of EGFR-targeted antibody cetuximab and antibody-drug conjugates by cholesterol sequestration[J]. Int J Cancer,2015,136(1):182-194.
    [26] Pasut G,Veronese FM. State of the art in PEGylation:the great versatility achieved after forty years of research[J]. J Control Release,2012,161(2):461-472.
    [27] Zheng M,Yue C,Ma Y,et al. Single-step assembly of DOX/ICG loaded lipidpolymer nanoparticles for highly effective chemo-photothermal combination therapy[J]. ACS Nano,2013,7(3):2056-2067.
    [28] Lim YT,Noh YW,Han JH,et al. Biocompatible polymer-nanoparticle-based bimodal imaging contrast agents for the labeling and tracking of dendritic cells[J]. Small,2008,4(10):1640-1645.
    [29] Li H,Li J,Ke W,et al. A near-infrared photothermal effect-responsive drug delivery system based on indocyanine green and doxorubicin-loaded polymeric micelles mediated by reversible diels-alder reaction[J]. Macromol Rapid Commun,2015,36(20):1841-1849.
    [30] Chen Y,Li H,Deng Y,et al. Near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment[J]. Acta Biomater,2017,51:374-392.
    [31] Dong Z,Gong H,Gao M,et al. Polydopamine nanoparticles as a versatile molecular loading platform to enable imaging-guided cancer combination therapy[J]. Theranostics,2016,6(7):1031-1042.
    [32] Tian B,Wang C,Zhang S,et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide[J]. ACS Nano,2011,5(9):7000-7009.
  • 期刊类型引用(1)

    1. 李春梅,史彤辉,陈旭,张馨元,周长胜. 血根碱壳聚糖微球的制备工艺优化及体内外性能研究. 特产研究. 2024(02): 36-46 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  164
  • HTML全文浏览量:  9
  • PDF下载量:  310
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-11-04
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭