• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

羟基积雪草酸的镇痛活性及其作用机制研究

白溪山, 邓超锐, 李育晓, 李红锐, 李艳红, 黄相中

白溪山,邓超锐,李育晓,等. 羟基积雪草酸的镇痛活性及其作用机制研究[J]. 中国药科大学学报,2024,55(2):230 − 235. DOI: 10.11665/j.issn.1000-5048.2023103002
引用本文: 白溪山,邓超锐,李育晓,等. 羟基积雪草酸的镇痛活性及其作用机制研究[J]. 中国药科大学学报,2024,55(2):230 − 235. DOI: 10.11665/j.issn.1000-5048.2023103002
BAI Xishan, DENG Chaorui, LI Yuxiao, et al. Anti-nociceptive effect and mechanism of madecassic acid[J]. J China Pharm Univ, 2024, 55(2): 230 − 235. DOI: 10.11665/j.issn.1000-5048.2023103002
Citation: BAI Xishan, DENG Chaorui, LI Yuxiao, et al. Anti-nociceptive effect and mechanism of madecassic acid[J]. J China Pharm Univ, 2024, 55(2): 230 − 235. DOI: 10.11665/j.issn.1000-5048.2023103002

羟基积雪草酸的镇痛活性及其作用机制研究

基金项目: 国家自然科学基金项目(No. 81960783);云南省重大科技专项(No. 202102AA100018);云南省基础研究计划重点项目(No. 202201AS070012);云南省基础研究计划青年项目(No. 202201AU070045)
详细信息
    通讯作者:

    黄相中: Tel:0871-65952171 E-mail:xiangzhongh@126.com

  • 中图分类号: R965

Anti-nociceptive effect and mechanism of madecassic acid

Funds: This study was supported by the National Natural Science Foundation of China (No. 81960783), the Major Scientific and Technological Special Project of Yunnan Province (No. 202102AA100018), the Key Project of Yunnan Fundamental Research Program (No. 202201AS070012), and the Youth Project of Yunnan Fundamental Research Program (No. 202201AU070045)
  • 摘要:

    目前对积雪草的功效成分研究主要集中在三萜皂苷类成分,对其他成分的药理活性研究较少。本研究采用小鼠醋酸扭体实验、热板法实验和福尔马林实验,对羟基积雪草酸的镇痛活性进行探究。实验分为对照组、阳性药阿司匹林组和低(10 mg/kg)、中(20 mg/kg)、高(40 mg/kg)剂量的羟基积雪草酸(MA)组。同时,还采用阿片受体阻断实验,辣椒素和谷氨酸诱导的小鼠舔爪实验,对其镇痛机制进行研究。结果显示:MA在醋酸扭体实验和福尔马林实验的Ⅱ阶段表现出显著的镇痛活性;在醋酸扭体实验和福尔马林实验中,MA的镇痛活性没有被纳洛酮明显减弱;中、高剂量的MA均能有效地减轻由辣椒素所引起的疼痛,抑制率分别为29.5%和64.4%,还能有效地缩减由谷氨酸所引起的舔爪时间,抑制率分别为30.9%和56.1%。研究结果表明:MA可通过作用于外周神经系统发挥较好的镇痛作用;该化合物产生的镇痛活性可能涉及谷氨酸能系统和TRPV1的调节,但不涉及阿片能系统。

    Abstract:

    To date, the investigation of the functional composition of Centella asiatica (L.) Urban has been mainly focused on the triterpenoid saponins, with little research on the other compositions. The acetic acid-induced writhing, Eddy's hot plate and formalin tests were employed to investigate the anti-nociceptive effects of madecassic acid (MA). The experiment was divided into normal control group, acetylsalicylic acid (ASA) group, and the MA groups of low (10 mg/kg), medium (20 mg/kg) and high (40 mg/kg) dosage. Meanwhile, the anti-nociceptive effect of MA on the acetic acid and formalin-induced nociceptive models in the absence and presence of NAL (naloxone hydrochloride) was evaluated. To have an insight into the anti-nociceptive mechanisms of MA, the capsaicin- and glutamate-induced paw licking tests were also employed to evaluate the involvement of the vanilloid and glutamatergic systems, respectively. Results showed that MA exhibited good anti-nociceptive activity in the acetic acid-induced writhing test and the second phase of formalin test; the anti-nociceptive effect of MA in both the acetic acid and formalin-induced nociception was not effectively removed by NAL; MA (20 mg/kg and 40 mg/kg) effectively reduced the duration of biting/licking the capsaicin-injected paw with inhibition rates of 29.5% and 64.4%, respectively; MA (20 mg/kg and 40 mg/kg) distinctly shortened the time spent in biting/licking the glutamate-injected paw by 30.9% and 56.1%, respectively. In summary, MA induces significant peripheral anti-nociceptive effect, and the anti-nociceptive activities probably involve the modulation of glutamatergic systems and vanilloid systems (TRPV1) instead of the opioidergic system.

  • Figure  1.   Chemical structure of madecassic acid(MA)

    Figure  2.   Effects of MA on writhing induced by injection of acetic acid in mice ($ \bar{x} $ ± sn = 10)

    ASA: Acetylsalicylic acid; NAL: Naloxone hydrochloride** P < 0.01,*** P < 0.001 vs control group, ns:P > 0.05

    Figure  3.   Effect of MA on formalin-induced nociception in mice ($ \bar{x} $ ± sn = 6)NAL:Naloxone hydrochloride

    ** P < 0.01,*** P < 0.001 vs control group; ns:P > 0.05

    Figure  4.   Effect of MA on the capsaicin(Capsz)-induced paw licking response in mice ($ \bar{x} $ ± sn = 6)

    * P < 0.05,*** P < 0.001 vs control group

    Figure  5.   Effect of MA on the glutamate-induced paw licking response in mice ($ \bar{x} $ ± sn = 6)

    ** P < 0.01,*** P < 0.001 vs control group

    Table  1   Effects of MA on hot plate-induced nociception in mice ($ \bar{x} $ ± sn = 10)

    Group Dose/
    (mg/kg)
    Interval following treatment
    0 30 60 90 120 min
    Latency time/s
    Control - 10.15 ± 2.56 11.01 ± 2.71 10.87 ± 1.64 9.92 ± 1.72 10.81 ± 2.68
    Acetylsalicylic acid(ASA) 100 11.68 ± 2.26 16.71 ± 2.65** 17.08 ± 1.94** 15.16 ± 2.20* 12.61 ± 2.85
    MA 10 11.31 ± 2.03 12.08 ± 2.91 12.26 ± 3.58 11.16 ± 2.89 12.21 ± 2.36
    20 13.37 ± 3.65 13.97 ± 4.02 12.76 ± 3.72 12.38 ± 2.97 11.84 ± 2.86
    40 10.68 ± 3.53 13.76 ± 2.93 12.83 ± 3.57 14.18 ± 4.02 13.23 ± 3.29
    * P < 0.05,** P < 0.01 vs control group. Two-Way repeated measure ANOVA followed by Bonferroni’s multiple comparison test
    下载: 导出CSV
  • [1]

    Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain[J]. Curr Opin Support Palliat Care, 2014, 8(2): 143-151. doi: 10.1097/SPC.0000000000000055

    [2]

    Benyamin R, Trescot AM, Datta S, et al. Opioid complications and side effects[J]. Pain Physician, 2008, 11 (2 Suppl): S105-S120.

    [3]

    Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective[J]. AAPS J, 2008, 10(4): 537-551. doi: 10.1208/s12248-008-9056-1

    [4]

    Savage SR. Long-term opioid therapy: assessment of consequences and risks[J]. J Pain Symptom Manage, 1996, 11(5): 274-286. doi: 10.1016/0885-3924(95)00202-2

    [5] J]. Chin Wild Plant Res(中国野生植物资源), 2010, 29(3): 6-9.

    Yang Y, Ding Y, Xia Y. Advances in the study of analytic methods and pharmacological actions of Centella asiatica L

    [6]

    Kraft O, Hartmann AK, Hoenke S, et al. Madecassic acid-a new scaffold for highly cytotoxic agents[J]. Int J Mol Sci, 2022, 23(8): 4362. doi: 10.3390/ijms23084362

    [7]

    Hsu YM, Hung YC, Hu LH, et al. Anti-diabetic effects of madecassic acid and rotundic acid[J]. Nutrients, 2015, 7(12): 10065-10075. doi: 10.3390/nu7125512

    [8]

    Won JH, Shin JS, Park HJ, et al. Anti-inflammatory effects of madecassic acid via the suppression of NF-kappaB pathway in LPS-induced RAW 264.7 macrophage cells[J]. Planta Med, 2010, 76(3): 251-257. doi: 10.1055/s-0029-1186142

    [9]

    Bai XS, Li YH, Li YX, et al. Antinociceptive activity of doliroside B[J]. Pharm Biol, 2023, 61(1): 201-212. doi: 10.1080/13880209.2022.2163407

    [10]

    Ayumi RR, Mossadeq WMS, Zakaria ZA, et al. Antinociceptive activity of asiaticoside in mouse models of induced nociception[J]. Planta Med, 2020, 86(8): 548-555. doi: 10.1055/a-1144-3663

    [11] Wu P. Research progress on the influence of Centella asiatica (L. ) Urban on nervous system[J]. J Med Pharm Chin Minorities (中国民族医药杂志), 2009, 15(11): 71-72.
    [12]

    Berkenkopf JW, Weichman BM. Production of prostacyclin in mice following intraperitoneal injection of acetic acid, phenylbenzoquinone and zymosan: its role in the writhing response[J]. Prostaglandins, 1988, 36(5): 693-709. doi: 10.1016/0090-6980(88)90014-7

    [13]

    Shibata M, Ohkubo T, Takahashi H, et al. Modified formalin test: characteristic biphasic pain response[J]. Pain, 1989, 38(3): 347-352. doi: 10.1016/0304-3959(89)90222-4

    [14]

    Sulaiman MR, Zakaria ZA, Mohamad AS, et al. Antinociceptive and anti-inflammatory effects of the ethanol extract of Alpinia conchigera rhizomes in various animal models[J]. Pharm Biol, 2010, 48(8): 861-868. doi: 10.3109/13880200903302820

    [15]

    Jaios ES, Rahman SA, Ching SM, et al. Possible mechanisms of antinociception of methanol extract of Melastoma malabathricum leaves[J]. Rev Bras De Farmacogn, 2016, 26(5): 586-594. doi: 10.1016/j.bjp.2016.01.011

    [16]

    Sakurada T, Matsumura T, Moriyama T, et al. Differential effects of intraplantar capsazepine and ruthenium red on capsaicin-induced desensitization in mice[J]. Pharmacol Biochem Behav, 2003, 75(1): 115-121. doi: 10.1016/S0091-3057(03)00066-2

    [17]

    Cortright DN, Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. An update[J]. Eur J Biochem, 2004, 271(10): 1814-1819. doi: 10.1111/j.1432-1033.2004.04082.x

    [18]

    Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J]. Science, 2000, 288(5464): 306-313. doi: 10.1126/science.288.5464.306

    [19]

    Beirith A, Santos ARS, Calixto JB. Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw[J]. Brain Res, 2002, 924(2): 219-228. doi: 10.1016/S0006-8993(01)03240-1

    [20]

    Zhuo M. Ionotropic glutamate receptors contribute to pain transmission and chronic pain[J]. Neuropharmacology, 2017, 112 (Pt A): 228-234.

  • 期刊类型引用(1)

    1. 谢珠珠,杨柯鸿,冯文静,邹攀,钱荣康,钱荣华. 羟基积雪草酸对乳腺癌MCF-7细胞增殖、凋亡和自噬的影响. 湖南中医药大学学报. 2024(05): 771-777 . 百度学术

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  60
  • PDF下载量:  23
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-29
  • 刊出日期:  2024-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭