高级检索

类泛素化修饰在2型糖尿病发生中的研究进展

陈曦, 金亮

陈曦,金亮. 类泛素化修饰在2型糖尿病发生中的研究进展[J]. 中国药科大学学报,2025,56(1):125 − 131. DOI: 10.11665/j.issn.1000-5048.2023112002
引用本文: 陈曦,金亮. 类泛素化修饰在2型糖尿病发生中的研究进展[J]. 中国药科大学学报,2025,56(1):125 − 131. DOI: 10.11665/j.issn.1000-5048.2023112002
CHEN Xi, JIN Liang. Research progress on sumoylation in type 2 diabetes mellitus[J]. J China Pharm Univ, 2025, 56(1): 125 − 131. DOI: 10.11665/j.issn.1000-5048.2023112002
Citation: CHEN Xi, JIN Liang. Research progress on sumoylation in type 2 diabetes mellitus[J]. J China Pharm Univ, 2025, 56(1): 125 − 131. DOI: 10.11665/j.issn.1000-5048.2023112002

类泛素化修饰在2型糖尿病发生中的研究进展

基金项目: 国家自然科学基金项目(No.82373925,No.82070801)
详细信息
    通讯作者:

    金亮: Tel:025-83271152 E-mail:ljstemcell@cpu.edu.cn

  • 中图分类号: R587.1

Research progress on sumoylation in type 2 diabetes mellitus

Funds: This study was supported by the National Natural Science Foundation of China (No.82373925,No.82070801)
  • 摘要:

    类泛素小分子(small ubiquitin-related modifier,SUMO)修饰是一种近年来新发现的蛋白质翻译后修饰方式,经由类似泛素的小分子蛋白——SUMO与目标蛋白质上特定的赖氨酸支链形成共价键,修饰目标蛋白质,从而影响靶蛋白生物活性、稳定性以及细胞定位等。SUMO化修饰在2型糖尿病(type 2 diabetes mellitus,T2DM)的发生发展中扮演着重要角色。本文从SUMO化修饰调控胰岛β细胞功能、调控骨骼肌、肝脏等组织的代谢活动及调控糖尿病并发症的发生发展等方面,综述了SUMO化修饰与T2DM及其相关并发症间的关系。对SUMO化修饰更深入的了解有助于在分子水平上揭示T2DM的发病机制,为T2DM及其相关并发症早期诊断以及后期治疗提供新思路。

    Abstract:

    Sumoylation is a newly discovered post-translational modification, in which a small ubiquitin-like modifier (SUMO) is covalently conjugated to a lysine residue in a target protein. This provides an efficient way to modulate the activity, stability and subcellular localization of a wide variety of substrates. Sumoylation plays a key role in the occurrence and development of type 2 diabetes mellitus (T2DM). This paper addresses the relationship between sumoylation and T2DM in regulation of pancreatic β-cell function, the metabolic order in skeletal muscles, liver and other organs and diabetes-associated complications. A deeper knowledge of sumoylation may enable us to better understand the pathogenesis of T2DM and sumoylation system at the molecular level, which can help provide new ideas for the early diagnosis and subsequent treatment of T2DM and its associated complications.

  • Figure  1.   Sumoylation cycle

    SUMO: Small ubiquitin-related modifier; SAE: SUMO activating enzyme subunit; UBC9: Ubiquitin-conjugating enzyme 9

  • [1] Mu JM, Liu Y, Zhang FF, et al. Relationship between circular RNA and type 2 diabetes and its clinical application[J]. J China Pharm Univ(中国药科大学学报), 2020, 51(3): 374-378.
    [2]

    Cloete L. Diabetes mellitus: an overview of the types, symptoms, complications and management[J]. Nurs Stand, 2022, 37(1): 61-66. doi: 10.7748/ns.2021.e11709

    [3] Wu Y, Chen YJ. Recent progress of functional impacts of ubiquitin-like modifications on ribosomal proteins[J]. J China Pharm Univ(中国药科大学学报), 2022, 53(5): 507-517.
    [4]

    Carmichael RE, Wilkinson KA, Craig TJ. Insulin-dependent GLUT4 trafficking is not regulated by protein SUMOylation in L6 myocytes[J]. Sci Rep, 2019, 9(1): 6477. doi: 10.1038/s41598-019-42574-3

    [5]

    Yau TY, Sander W, Eidson C, et al. SUMO interacting motifs: structure and function[J]. Cells, 2021, 10(11): 2825. doi: 10.3390/cells10112825

    [6]

    Wang W, Matunis MJ. Paralogue-specific roles of SUMO1 and SUMO2/3 in protein quality control and associated diseases[J]. Cells, 2023, 13(1): 8. doi: 10.3390/cells13010008

    [7]

    Osmanovic A, Förster A, Widjaja M, et al. A SUMO4 initiator codon variant in amyotrophic lateral sclerosis reduces SUMO4 expression and alters stress granule dynamics[J]. J Neurol, 2022, 269(9): 4863-4871. doi: 10.1007/s00415-022-11126-7

    [8]

    Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO[J]. Nat Rev Mol Cell Biol, 2022, 23(11): 715-731. doi: 10.1038/s41580-022-00500-y

    [9]

    Tokarz P, Woźniak K. SENP proteases as potential targets for cancer therapy[J]. Cancers, 2021, 13(9): 2059. doi: 10.3390/cancers13092059

    [10]

    He XY, Lai QH, Chen C, et al. Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function[J]. Diabetologia, 2018, 61(4): 881-895. doi: 10.1007/s00125-017-4523-9

    [11]

    Nan JY, Lee JS, Moon JH, et al. SENP2 regulates mitochondrial function and insulin secretion in pancreatic β cells[J]. Exp Mol Med, 2022, 54(1): 72-80. doi: 10.1038/s12276-021-00723-7

    [12]

    Dai XQ, Plummer G, Casimir M, et al. SUMOylation regulates insulin exocytosis downstream of secretory granule docking in rodents and humans[J]. Diabetes, 2011, 60(3): 838-847. doi: 10.2337/db10-0440

    [13]

    Mziaut H, Trajkovski M, Kersting S, et al. Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5[J]. Nat Cell Biol, 2006, 8(5): 435-445. doi: 10.1038/ncb1395

    [14]

    Walters TS, McIntosh DJ, Ingram SM, et al. SUMO-modification of human Nrf2 at K110 and K533 regulates its nucleocytoplasmic localization, stability and transcriptional activity[J]. Cell Physiol Biochem, 2021, 55(2): 141-159. doi: 10.33594/000000351

    [15]

    Alfaro AJ, Dittner C, Becker J, et al. Fasting-sensitive SUMO-switch on Prox1 controls hepatic cholesterol metabolism[J]. EMBO Rep, 2023, 24(10): e55981. doi: 10.15252/embr.202255981

    [16]

    Liu Y, Dou X, Zhou WY, et al. Hepatic small ubiquitin-related modifier (SUMO)-specific protease 2 controls systemic metabolism through SUMOylation-dependent regulation of liver-adipose tissue crosstalk[J]. Hepatology, 2021, 74(4): 1864-1883. doi: 10.1002/hep.31881

    [17]

    Dou X, Zhou WY, Ding M, et al. The protease SENP2 controls hepatic gluconeogenesis by regulating the SUMOylation of the fuel sensor AMPKα[J]. J Biol Chem, 2022, 298(2): 101544. doi: 10.1016/j.jbc.2021.101544

    [18]

    Giorgino F, de Robertis O, Laviola L, et al. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells[J]. Proc Natl Acad Sci U S A, 2000, 97(3): 1125-1130. doi: 10.1073/pnas.97.3.1125

    [19]

    Koo YD, Lee JS, Lee SA, et al. SUMO-specific protease 2 mediates leptin-induced fatty acid oxidation in skeletal muscle[J]. Metabolism, 2019, 95: 27-35. doi: 10.1016/j.metabol.2019.03.004

    [20]

    Koo YD, Choi JW, Kim M, et al. SUMO-specific protease 2 (SENP2) is an important regulator of fatty acid metabolism in skeletal muscle[J]. Diabetes, 2015, 64(7): 2420-2431. doi: 10.2337/db15-0115

    [21]

    Kim D, Fiske BP, Birsoy K, et al. SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance[J]. Nature, 2015, 520(7547): 363-367. doi: 10.1038/nature14363

    [22]

    Cox AR, Chernis N, Kim KH, et al. Ube2i deletion in adipocytes causes lipoatrophy in mice[J]. Mol Metab, 2021, 48: 101221. doi: 10.1016/j.molmet.2021.101221

    [23]

    Wang TS, Cao Y, Zheng Q, et al. SENP1-Sirt3 signaling controls mitochondrial protein acetylation and metabolism[J]. Mol Cell, 2019, 75(4): 823-834. e5.

    [24]

    Mikkonen L, Hirvonen J, Jänne OA. SUMO-1 regulates body weight and adipogenesis via PPARγ in male and female mice[J]. Endocrinology, 2013, 154(2): 698-708. doi: 10.1210/en.2012-1846

    [25]

    Chen QB, Huang L, Pan DN, et al. Cbx4 sumoylates Prdm16 to regulate adipose tissue thermogenesis[J]. Cell Rep, 2018, 22(11): 2860-2872. doi: 10.1016/j.celrep.2018.02.057

    [26]

    Hu JL, Xue PC, Mao XB, et al. SUMO1/UBC9-decreased Nox1 activity inhibits reactive oxygen species generation and apoptosis in diabetic retinopathy[J]. Mol Med Rep, 2018, 17(1): 1690-1698.

    [27]

    Chen M, Zhang QH, Wang S, et al. Inhibition of diabetes-induced Drp1 deSUMOylation prevents retinal vascular lesions associated with diabetic retinopathy[J]. Exp Eye Res, 2023, 226: 109334. doi: 10.1016/j.exer.2022.109334

    [28]

    Zhang W, Li F, Hou JH, et al. Aberrant SUMO2/3 modification of RUNX1 upon SENP1 inhibition is linked to the development of diabetic retinopathy in mice[J]. Exp Eye Res, 2023, 237: 109695. doi: 10.1016/j.exer.2023.109695

    [29]

    Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes[J]. N Engl J Med, 2020, 383(23): 2219-2229. doi: 10.1056/NEJMoa2025845

    [30]

    Guo F, Song Y, Wu LN, et al. SUMO specific peptidase 6 regulates the crosstalk between podocytes and glomerular endothelial cells in diabetic kidney disease[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(5): 166685. doi: 10.1016/j.bbadis.2023.166685

    [31]

    Liu J, Wu ZS, Han D, et al. Mesencephalic astrocyte-derived neurotrophic factor inhibits liver cancer through small ubiquitin-related modifier (SUMO)ylation-related suppression of NF-κB/snail signaling pathway and epithelial-mesenchymal transition[J]. Hepatology, 2020, 71(4): 1262-1278. doi: 10.1002/hep.30917

    [32]

    Wang LY, Zhu JW, Fang M, et al. Inhibition of p53 deSUMOylation exacerbates puromycin aminonucleoside-induced apoptosis in podocytes[J]. Int J Mol Sci, 2014, 15(11): 21314-21330. doi: 10.3390/ijms151121314

    [33]

    Chang E, Abe JI. Kinase-SUMO networks in diabetes-mediated cardiovascular disease[J]. Metabolism, 2016, 65(5): 623-633. doi: 10.1016/j.metabol.2016.01.007

    [34]

    Shishido T, Woo CH, Ding B, et al. Effects of MEK5/ERK5 association on small ubiquitin-related modification of ERK5: implications for diabetic ventricular dysfunction after myocardial infarction[J]. Circ Res, 2008, 102(11): 1416-1425. doi: 10.1161/CIRCRESAHA.107.168138

    [35]

    Gupta MK, McLendon PM, Gulick J, et al. UBC9-mediated sumoylation favorably impacts cardiac function in compromised hearts[J]. Circ Res, 2016, 118(12): 1894-1905. doi: 10.1161/CIRCRESAHA.115.308268

  • 期刊类型引用(1)

    1. 索传军,牌艳欣. 基于融合指标与作者贡献度的z指数优化研究. 情报理论与实践. 2022(05): 28-36 . 百度学术

    其他类型引用(1)

图(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-11-19
  • 刊出日期:  2025-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭