Synthesis and antitumor activity of heteroatom-substituted azulenes derivatives of 1,2-benzothiazine
-
摘要:
以吡罗昔康甲基物为原料,利用生物电子等排和活性拼接等药物设计原理,设计并合成10个结构新颖的目标化合物,其结构经1H NMR、MS等表征。通过测定对胰腺癌细胞Capan-1、白血病细胞L1210和人肝癌细胞SMMC-7721的抑制活性,评价目标化合物的体外抗肿瘤活性。结果表明,化合物6f(IC50=4.8±0.5 μmol/L)对胰腺癌细胞Capan-1表现出较好的抑制活性;化合物6b(IC50=2.6±0.3 μmol/L)对白血病细胞L1210表现出较好的抑制活性;化合物6c(IC50=2.1±0.2 μmol/L)对人肝癌细胞SMMC-7721表现出较好的抑制活性。初步的抗肿瘤活性实验结果表明,薁类衍生物的引入,对提高该类化合物的抗肿瘤活性有一定的作用。
Abstract:Using methylated pyrroloxicam as a starting material and following the principles of drug design such as bioisosterism and active site binding, we designed and synthesized ten structurally novel target compounds, whose structures were characterized by 1H NMR and MS analysis. The in vitro antitumor activity of these title compounds was evaluated by measuring their inhibitory activity against pancreatic cancer cells Capan-1, leukemia cells L1210, and human liver cancer cells SMMC-7721. The results showed that compound 6f (IC50=4.8±0.5 μmol/L) exhibited good inhibitory activity against Capan-1 pancreatic cancer cells, that compound 6b (IC50=2.6±0.3 μmol/L) showed good inhibitory activity against L1210 leukemia cells, and that compound 6c (IC50=2.1±0.2 μmol/L) displayed good inhibitory activity against SMMC-7721 human liver cancer cells. These preliminary results from the antitumor activity experiments suggest that the introduction of benzothiazine derivatives plays a certain role in enhancing the antitumor activity of this class of compounds.
-
Keywords:
- azulenes derivatives /
- 1,2-benzothiazine /
- synthesis /
- antitumor activity
-
-
Table 1 Physical properties of compounds 5a – 5j and 6a – 6j
Compd. Formula Yield/% mp/℃ Elemental analysis(%,Calcd.) C H N 5a C20H19N5O4S2 45 192–193 55.52(55.50) 4.21(4.19) 15.27(15.31) 5b C20H18FN5O4S2 47 196–198 50.48(50.52) 3.78(3.82) 14.81(14.73) 5c C20H17BrFN5O4S2 45 203–205 43.35(43.33) 3.05(3.09) 12.65(12.63) 5d C20H19N5O5S2 42 202–204 50.75(50.73) 4.02(4.04) 14.75(14.79) 5e C21H21N5O4S2 48 198–200 53.53(53.49) 4.55(4.49) 14.81(14.85) 5f C20H17Cl2N5O4S2 49 210–212 45.65(45.63) 3.32(3.26) 13.34(13.30) 5g C18H17N5O4S3 52 221–223 46.58(46.64) 3.68(3.70) 15.13(15.11) 5h C18H22N6O4S2 50 233–235 47.91(47.99) 4.88(4.92) 18.69(18.65) 5i C23H23N5O4S2 42 228–230 55.48(55.52) 4.68(4.66) 14.03(14.07) 5j C23H24N6O4S2 41 225–227 53.93(53.89) 4.74(4.72) 16.36(16.40) 6a C20H17N5O3S2 64 229–231 54.60(54.66) 3.94(3.90) 15.97(15.93) 6b C20H16FN5O3S2 65 222–224 52.57(52.51) 3.51(3.53) 15.35(15.31) 6c C20H15BrFN5O3S2 60 224–226 44.86(44.78) 2.86(2.82) 13.12(13.06) 6d C20H17N5O4S2 61 223–226 52.68(52.74) 3.72(3.76) 15.36(15.38) 6e C21H19N5O3S2 67 225–227 55.63(55.61) 4.26(4.22) 15.38(15.44) 6f C20H15Cl2N5O3S2 66 240–242 47.19(47.25) 2.99(2.97) 13.80(13.78) 6g C18H15N5O3S3 73 249–251 48.57(48.53) 3.35(3.39) 15.70(15.72) 6h C18H20N6O3S2 71 261–263 49.95(49.99) 4.72(4.66) 19.45(19.43) 6i C23H21N5O3S2 59 258–260 57.64(57.60) 4.39(4.41) 14.62(14.60) 6j C23H22N6O3S2 59 252–254 55.82(55.86) 4.54(4.48) 16.95(16.99) Table 2 Spectral data of compounds 3 – 6i
Compd. 1H NMR (400 MHz, DMSO-d6) δ 13C NMR (100 MHz , DMSO-d6) δ MS m/z [M+H]+ 3 12.96(1H,s,-OH),7.73-7.95(4H,m,Ph-H),3.00(3H,s,-NCH3) 160,156,134,132,129,127,124,110,37 312 4 12.84(1H,s,-OH),7.69-7.91(4H,m,Ph-H),5.27(2H,s,-NH2),3.11(3H,s,-NCH3) 167,156,144,134,132,129,127,124,111,38 326 5a 12.88(1H,s,-OH),7.65-7.89(9H,m,Ph-H),5.43(2H,s,-NH2),3.31(2H,t,-SCH2),3.13(3H,s,-NCH3),3.05(2H,t,-CH2-C=O) 200,159,156,144,137,134,133,132,129,127,124,111,42,38,27 458 5b 12.82(1H,s,-OH),7.45-7.86(8H,m,Ph-H),5.46(2H,s,-NH2),3.35(2H,t,-SCH2),3.12(3H,s,-NCH3),3.02(2H,t,-CH2-C=O) 200,162,158,156,143,135,134,133,132,128,127,124,111,41,38,28 476 5c 12.78(1H,s,-OH),7.36-8.06(7H,m,Ph-H),5.54(2H,s,-NH2),3.29(2H,t,-SCH2),3.07(3H,s,-NCH3),2.97(2H,t,-CH2-C=O) 200,161,159,156,144,138,134,133,132,128,127,124,118,110,41,38,28 554 5d 12.77(1H,s,-OH),10.68(1H,s,Ph-OH),7.18-7.86(8H,m,Ph-H),5.48(2H,s,-NH2),3.17(2H,t,-SCH2),3.09(3H,s,-NCH3),2.93(2H,t,-CH2-C=O) 200,163,159,156,144,135,133,132,129,127,124,122,118,110,41,38,28 474 5e 12.83(1H,s,-OH),7.21-7.87(8H,m,Ph-H),5.64(2H,s,-NH2),3.22(2H,t,-SCH2),3.11(3H,s,-NCH3),2.95(2H,t,-CH2-C=O),1.51(3H,s,Ph-CH3) 200,160,156,144,143,135,134,133,132,129,127,124,118,110,42,38,28,21 472 5f 12.84(1H,s,-OH),7.66-8.26(7H,m,Ph-H),5.52(2H,s,-NH2),3.27(2H,t,-SCH2),3.07(3H,s,-NCH3),2.98(2H,t,-CH2-C=O) 200,159,156,144,138,136,134,133,132,130,128,127,110,41,38,28 526 5g 12.80(1H,s,-OH),7.32-7.86(4H,m,Ph-H),7.16-7.66(3H,d,thiophene-H),5.44(2H,s,-NH2),3.27(2H,t,-SCH2),3.11(3H,s,-NCH3),2.98(2H,t,-CH2-C=O) 192,159,156,144,134,133,132,129,127,124,110,40,37,27 464 5h 12.78(1H,s,-OH),7.34-7.88(4H,m,Ph-H),5.50(2H,s,-NH2),3.23(2H,t,-SCH2),3.10(3H,s,-NCH3),2.95(2H,t,-CH2-C=O),2.69(4H,t,-CH2-N-CH2),1.33(4H,t,pyrrolidine-CH2-CH2) 175,159,156,144,142,135,134,132,129,127,124,110,49,38,32,29,25 451 5i 12.82(1H,s,-OH),7.34-7.85(7H,m,Ph-H),5.58(2H,s,-NH2),3.19(2H,t,-SCH2),3.11(3H,s,-NCH3),2.89(2H,t,-CH2-C=O),1.35-1.95(6H,m,-CH2-CH2-CH2) 200,159,156,148,144,142,135,134,132,129,127,126,124,110,40,38,33,28,25 498 5j 12.86(1H,s,-OH),7.26-7.82(8H,m,Ph-H),5.62(2H,s,-NH2),3.32-4.42(6H,m,piperidine-H),3.29(2H,t,-SCH2),3.03(3H,s,-NCH3),2.77(2H,t,-CH2-C=O), 172,159,156,144,135,134,132,129,127,126,124,111,49,48,38,32,29 513 6a 12.78(1H,s,-OH),7.65-7.94(9H,m,Ph-H),3.23(2H,t,-SCH2),3.07(3H,s,-NCH3),2.75(2H,t,-CH2-C=N) 165,159,156,144,135,132,129,128,127,124,111,37,33,31 440 6b 12.68(1H,s,-OH),7.46-7.84(8H,m,Ph-H),3.31(2H,t,-SCH2),3.12(3H,s,-NCH3),2.79(2H,t,-CH2-C=N) 165,160,159,156,144,135,133,132,131,129,127,124,116,111,37,33,31 458 6c 12.74(1H,s,-OH),7.30-7.96(7H,m,Ph-H),3.29(2H,t,-SCH2),3.03(3H,s,-NCH3),2.69(2H,t,-CH2-C=N) 165,159,156,144,138,136,135,132,128,124,120,118,110,37,33,31 536 6d 12.78(1H,s,-OH),10.66(1H,s,Ph-OH),7.12-7.76(8H,m,Ph-H),3.19(2H,t,-SCH2),3.11(3H,s,-NCH3),2.73(2H,t,-CH2-C=N) 165,163,159,156,144,135,132,129,127,124,121,118,110,37,33,31 456 6e 12.73(1H,s,-OH),7.18-7.87(8H,m,Ph-H),3.27(2H,t,-SCH2),3.07(3H,s,-NCH3),2.75(2H,t,-CH2-C=N),1.47(3H,s,Ph-CH3) 165,159,156,144,141,135,132,131,129,127,124,110,42,37,33,31,21 454 6f 12.74(1H,s,-OH),7.56-8.18(7H,m,Ph-H),3.19(2H,t,-SCH2),3.01(3H,s,-NCH3),2.68(2H,t,-CH2-C=N) 165,159,156,144,138,136,135,134,132,130,129,126,110,37,33,31 508 6g 12.82(1H,s,-OH),7.44-7.84(4H,m,Ph-H),7.10-7.62(3H,d,thiophene-H),3.20(2H,t,-SCH2),2.993H,(s,-NCH3),2.68(2H,t,-CH2-C=N) 165,159,156,144,134,132,129,127,126,124,110,37,34,31 446 6h 12.74(1H,s,-OH),7.44-7.78(4H,m,Ph-H),3.23(2H,t,-SCH2),3.04(3H,s,-NCH3),2.75(2H,t,-CH2-C=N),2.58(4H,t,-CH2-N-CH2),1.66(4H,t,pyrrolidine-CH2-CH2) 159,156,149,144,134,132,129,127,124,110,49,37,31,30,26 433 6i 12.76(1H,s,-OH),7.44-7.84(7H,m,Ph-H),3.23(2H,t,-SCH2),3.13(3H,s,-NCH3),2.63(2H,t,-CH2-C=N),1.35-1.87(6H,m,-CH2-CH2-CH2) 165,159,156,149,146,144,135,132,129,127,124,110,37,33,31,25 480 6j 12.82(1H,s,-OH),7.22-7.78(8H,m,Ph-H),3.36-4.44(6H,m,piperidine-H),3.25(2H,t,-SCH2),3.07(3H,s,-NCH3),2.73(2H,t,-CH2-C=N), 159,156,144,140,135,134,132,130,129,126,123,111,45,37,32,27,22 495 Table 3 Anti-cell proliferative activity of the tested compounds against Capan-1, SMMC-7721 and L1210 tumor cells($\bar{x}\pm s $, n=3)
Compd. IC50/(μmol/L) Capan-1 SMMC-7721 L1210 6a 15.7±1.4 18.2±1.7 14.6±1.5 6b 9.8±1.0 8.6±0.9 2.6±0.3 6c 9.6±1.0* 2.1±0.2* 8.7±0.8* 6d 10.8±1.1* 11.6±1.2 10.2±1.0* 6e 14.6±1.5 15.3±1.5 16.2±1.6 6f 4.8±0.5* 8.7±0.7* 9.4±0.9* 6g 11.4±1.2 14.1±1.4 15.8±1.6 6h 11.8±1.2 13.6±1.4* 13.8±1.4 6i 11.7±1.2 10.7±1.2* 9.2±0.9* 6j 12.8±1.3 11.6±1.2 13.6±1.4 Doxorubicin 3.5±0.6 2.7±0.2 1.4±0.2 1 >100 >100 >100 2 80.2±8.1 78.5±7.3 77.4±7.3 3 65.5±6.6 71.7±7.2 73.6±7.5 4 64.6±6.5 70.3±7.0 72.5±7.2 5a 15.2±1.4 17.2±1.7 15.6±1.6 5b 10.2±1.0 9.2±0.9 2.4±0.3 5c 9.8±1.0* 6.2±0.6* 6.7±0.8* 5d 10.6±1.1* 10.8±1.2 9.8±1.0* 5e 15.6±1.5 15.1±1.5 15.4±1.5 5f 7.6±0.7* 8.2±0.7* 8.8±0.9* 5g 12.2±1.2 14.3±1.4 14.2±1.4 5h 12.6±1.2 11.2±1.1* 13.6±1.4 5i 12.7±1.3 11.6±1.2* 8.6±0.9* 5j 11.8±1.2 13.6±1.4 15.2±1.5 *P<0.05 vs doxorubicin -
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30. doi: 10.3322/caac.21590
[2] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
[3] Guo ZR. R&D of imrecoxib based on pharmacophore and scaffold hopping[J]. Acta Pharm Sin(药学学报), 2018, 53(8): 1383-1386. [4] Brew DRM, Glasser FP. Synthesis and characterisation of magnesium silicate hydrate gels[J]. Cem Concr Res, 2005, 35(1): 85-98. doi: 10.1016/j.cemconres.2004.06.022
[5] Campbell IB, MacDonald SJF, Procopiou PA. Medicinal chemistry in drug discovery in big pharma: past, present and future[J]. Drug Discov Today, 2018, 23(2): 219-234. doi: 10.1016/j.drudis.2017.10.007
[6] Xin H, Gao X. Application of azulene in constructing organic optoelectronic materials: new tricks for an old dog[J]. ChemPlusChem, 2017, 82(7): 945-956. doi: 10.1002/cplu.201700039
[7] Xin HS, Hou B, Gao XK. Azulene-based π-functional materials: design, synthesis, and applications[J]. Acc Chem Res, 2021, 54(7): 1737-1753. doi: 10.1021/acs.accounts.0c00893
[8] Fu XY, Han H, Zhang D, et al. A polycyclic aromatic hydrocarbon diradical with pH-responsive magnetic properties[J]. Chem Sci, 2020, 11(21): 5565-5571. doi: 10.1039/D0SC00770F
[9] Murai M, Amir E, Amir RJ, et al. Azulene-based conjugated polymers: unique seven-membered ring connectivity leading to stimuli-responsiveness[J]. Chem Sci, 2012, 3(9): 2721-2725. doi: 10.1039/c2sc20615c
[10] Koch M, Blacque O, Venkatesan K. Syntheses and tunable emission properties of 2-alkynyl azulenes[J]. Org Lett, 2012, 14(6): 1580-1583. doi: 10.1021/ol300327b
[11] Ince M, Bartelmess J, Kiessling D, et al. Immobilizing NIR absorbing azulenocyanines onto single wall carbon nanotubes—from charge transfer to photovoltaics[J]. Chem Sci, 2012, 3(5): 1472. doi: 10.1039/c2sc20071f
[12] Wang X, Zhao XM, Zhang PP, et al. Synthesis and antitumor activity of 1, 2-benzothiazines imidazolo[1,2-b][1,3,4]triazazole derivatives[J]. J China Pharm Univ (中国药科大学学报), 2019, 50(5): 540-543.