Study of glycosides from Piper sintenense Hatusima
-
摘要:
为探究胡椒属植物小叶爬崖香(Piper sintenense Hatusima)中苷类化学成分,采用硅胶、ODS、MCI GEL CHP20P、Sephadex LH-20柱色谱和半制备高效液相等色谱技术,从小叶爬崖香95%乙醇提取物的正丁醇部位分离获得9个苷类化合物。根据理化性质及核磁共振数据,以上化合物被鉴定为(2S)-2-羟基-1-(4-羟基-3-甲氧基苯基)-1-丙酮-2-O-β-D-葡萄糖苷(1)、苯乙醇-β-D-葡萄糖苷(2)、苄醇-β-巢菜糖苷(3)、苄醇-β-樱草糖苷(4)、苯乙醇-β-D-呋喃芹菜糖基-(1''→2')-β-D-葡萄糖苷(5)、红景天苷(6)、苯乙醇-β-樱草糖苷(7)、(顺)-3-己烯醇-β-巢菜糖苷(8)、(顺)-3-己烯醇-β-樱草糖苷(9)。其中化合物1为新化合物,化合物3~9为首次从胡椒属中分离得到。
Abstract:In order to investigate the chemical constituents of glycosides in Piper sintenense Hatusima, column chromatographic techniques such as silica gel, ODS, MCI GEL CHP20P, Sephadex LH-20, and semi-preparative high performance liquid chromatography were used to afford nine glycosides from the n-butanol part of the 95% ethanol extract of Piper sintenense Hatusima. Based on the physicochemical properties and NMR data, the above compounds were identified as (2S)-2-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone-2-O-β-D-glucopyranoside (1), 2-phenylethyl β-D-glucopyranoside (2), benzyl α-L-arabinopyranosyl-(1''→6')-β-D-glucopyranoside (3), benzyl β-D-xylopyanosyl-(1''→6')-β-D-glucopyranoside (4), phenethyl β-D-apiofuranosyl-(1''→ 2')-β-D-glucopyranoside(5), salidroside (6), phenethanol β-D-xylopyanosyl-(1''→6')-β-D-glucopyranoside (7), (Z)-hexenyl-O-α-L-arabinopyranosyl-(1''→6')-O-β-D-glucopyranoside (8), (Z)-hexenyl-O-β-D-xylopyanosyl-(1''→6')-O-β-D-glucopyranoside (9). Compound 1 was identified as a new compound, and compounds 3-9 were isolated from the genus Piper for the first time.
-
-
Table 1 NMR data of compound 1 (CD3OD, J in Hz)
Position δH a) δC b) 1H-1H COSY HMBC (H→C) Agly 1 — 128.0 — — 2 7.63 (d, 2.0) 112.5 — C-1, 3, 4, 6, 7 3 — 149.4 — — 4 — 154.4 — — 5 6.92 (d, 8.5) 116.1 H-6 C-1, 3, 4 6 7.69 (dd, 8.5, 2.0) 125.5 H-5 C-2, 4, 7 7 — 201.1 — — 8 5.56 (q, 7.0) 76.2 H-9 C-9, 1' 9 1.52 (d, 7.0) 20.5 H-8 C-7, 8 3-OMe 3.96 (s) 56.5 — C-3 Glc 1' 4.31 (d, 7.5) 103.4 H-2' C-8, 5' 2' 3.33 c) 75.4 H-1', 3' C-4' 3' 3.30 c) 78.2 H-2', 4' C-5' 4' 3.32 c) 71.6 H-3', 5' C-3' 5' 3.36 c) 77.9 H-4', 6' C-4' 6' 3.93 (dd, 12.0, 2.0) 3.70 (dd, 12.0, 5.5) 62.9 H-5' C-5' a) Measured at 500 MHz; b) Measured at 125 MHz; c) Overlapped signals -
[1] Editorial Board of the Flora of China. Flora of China(中国植物志)[M]. Beijing: Science Press, 1982, 20 (1): 45. [2] Wu ZY. Xinhua Compendium of Materia Medica(新华本草纲要)[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1988: 190. [3] Xiang CP. Phytochemical Investigations on Three Ethnic Medicine and Their Biological Activities(三种民族药的化学成分及生物活性研究)[D]. Kunming: Kunming University of Science and Technology, 2017. [4] Fan DS, Zhou CY, Chen CY, et al. Lignans from the genus Piper L. and their pharmacological activities: an updated review[J]. Fitoterapia, 2023, 165: 105403. doi: 10.1016/j.fitote.2022.105403
[5] Shi YN, Shi YM, Yang L, et al. Lignans and aromatic glycosides from Piper wallichii and their antithrombotic activities[J]. J Ethnopharmacol, 2015, 162: 87-96. doi: 10.1016/j.jep.2014.12.038
[6] Wang DF, Zhou LL, Zhou HL, et al. Chemical composition and anti-inflammatory activity of n-butanol extract of Piper sarmentosum Roxb. in the intestinal porcine epithelial cells (IPEC-J2)[J]. J Ethnopharmacol, 2021, 269: 113723. doi: 10.1016/j.jep.2020.113723
[7] He S, Chen ML, Yang F, et al. Piperhancosides A–C, new lignan glycosides from the stems of Piper hancei Maxim[J]. Phytochem Lett, 2022, 50: 45-49. doi: 10.1016/j.phytol.2022.05.009
[8] Liimatainen J, Karonen M, Sinkkonen J, et al. Characterization of phenolic compounds from inner bark of Betula pendula[J]. Holzforschung, 2012, 66(2): 171-181. doi: 10.1515/HF.2011.146
[9] Kim KH, Lee KH, Choi SU, et al. Terpene and phenolic constituents of Lactuca indica L[J]. Arch Pharm Res, 2008, 31(8): 983-988. doi: 10.1007/s12272-001-1256-8
[10] Al-Massarani SM, El Gamal AA, Abd El Halim MF, et al. New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers[J]. Saudi Pharm J, 2017, 25(1): 110-119. doi: 10.1016/j.jsps.2016.05.006
[11] Kawahara E, Fujii M, Kato K, et al. Chemoenzymatic synthesis of naturally occurring benzyl 6-O-glycosyl-beta-D-glucopyranosides[J]. Chem Pharm Bull, 2005, 53(8): 1058-1061. doi: 10.1248/cpb.53.1058
[12] Murakami T, Kohno K, Ninomiya K, et al. Medicinal foodstuffs. XXV. Hepatoprotective principle and structures of ionone glucoside, phenethyl glycoside, and flavonol oligoglycosides from young seedpods of garden peas, Pisum sativum L.[J]. Chem Pharm Bull, 2001, 49(8): 1003-1008. doi: 10.1248/cpb.49.1003
[13] Kutluay VM, Makino T, Inoue M, et al. New knowledge about old drugs; a cardenolide type glycoside with cytotoxic effect and unusual secondary metabolites from Digitalis grandiflora Miller[J]. Fitoterapia, 2019, 134: 73-80. doi: 10.1016/j.fitote.2019.02.001
[14] Saimaru H, Orihara Y. Biosynthesis of acteoside in cultured cells of Olea europaea[J]. J Nat Med, 2010, 64(2): 139-145. doi: 10.1007/s11418-009-0383-z
[15] Ding Y, Liang C, Choi E, et al. Chemical constituents from Artemisia iwayomogi increase the function of osteoblastic MC3T3-E1 cells[J]. Nat Prod Sci, 2009, 15(4): 192-197.
[16] Otsuka H, Takeda Y, Yamasaki K. Xyloglucosides of benzyl and phenethyl alcohols and Z-hex-3-en-1-ol from leaves of Alangium platanifolium var. trilobum[J]. Phytochemistry, 1990, 29(11): 3681-3683. doi: 10.1016/0031-9422(90)85306-Z
[17] Zhang DD, Sun JJ. Research advances on application of pipper plant resources[J]. Mod Agric Sci Technol (现代农业科技), 2016, 10: 74-76. [18] Hua QQ, Liu Y, Liu CH, et al. Revealing synergistic mechanism of multiple components in Stauntonia brachyanthera Hand. -Mazz. for gout by virtual screening and system pharmacological approach[J]. Bioorg Chem, 2019, 91: 103118.