• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

中药挥发油化学成分和抗抑郁作用机制研究进展

张一飞, 程露, 任明诗, 郭焘, 匡凤姣, 康宗华, 罗建光, 吴斐华

张一飞,程露,任明诗,等. 中药挥发油化学成分和抗抑郁作用机制研究进展[J]. 中国药科大学学报,2025,56(1):22 − 30. DOI: 10.11665/j.issn.1000-5048.2024012001
引用本文: 张一飞,程露,任明诗,等. 中药挥发油化学成分和抗抑郁作用机制研究进展[J]. 中国药科大学学报,2025,56(1):22 − 30. DOI: 10.11665/j.issn.1000-5048.2024012001
ZHANG Yifei, CHENG Lu, REN Mingshi, et al. Research progress on the chemical composition and antidepressant mechanism of volatile oils of traditional Chinese medicine[J]. J China Pharm Univ, 2025, 56(1): 22 − 30. DOI: 10.11665/j.issn.1000-5048.2024012001
Citation: ZHANG Yifei, CHENG Lu, REN Mingshi, et al. Research progress on the chemical composition and antidepressant mechanism of volatile oils of traditional Chinese medicine[J]. J China Pharm Univ, 2025, 56(1): 22 − 30. DOI: 10.11665/j.issn.1000-5048.2024012001

中药挥发油化学成分和抗抑郁作用机制研究进展

详细信息
    通讯作者:

    吴斐华: Tel:13057621416 E-mail:fhwu2000@cpu.edu.cn

  • 中图分类号: R285;R964

Research progress on the chemical composition and antidepressant mechanism of volatile oils of traditional Chinese medicine

  • 摘要:

    抑郁症是一种由多种复杂原因引起的患者情绪低落和认知功能障碍的精神疾病。临床上抗抑郁药具有良好的短期疗效,但长期服用存在较多不良反应以及耐药性等问题。挥发油是以单萜和倍半萜为主的小分子化合物,大多具有芳香气味、易于透过血脑屏障和不良反应小的特点。中药挥发油通过调节神经单胺递质、下丘脑—垂体—肾上腺轴、脑源性神经营养因子、神经炎症和氧化应激、肠道菌群—肠—脑轴等机制,多途径多靶点发挥抗抑郁作用。本文总结中药挥发油抗抑郁主要化学成分、药理作用机制及临床应用,旨在为中药挥发油的进一步开发和临床应用提供参考。

    Abstract:

    Depressive disorder is a mental illness characterized by poor mood and cognitive dysfunction caused by a range of complicated factors. Antidepressants have strong short-term efficacy in clinical application, yet with significant adverse effects and resistance in long-term use. Essential oils are small molecular compounds mainly composed of monoterpenes and sesquiterpenes, most of which are characterized by aromatic odors, easy permeability through the blood-brain barrier, and low toxic side effects. Volatile oil from traditional Chinese medicine can regulate neurotransmitter monoamine, hypothalamic-pituitary-adrenal axis, brain-derived neurotrophic factor, neuroinflammation and oxidative stress, and intestinal microbiota-gut-brain axis to exert an antidepressant effect through multiple pathways and targets. This review summarizes the main antidepressant chemical components of essential oil of traditional Chinese medicine, their pharmacological mechanisms and clinical application, aiming to provide some reference for further development and clinical application of essential oil of traditional Chinese medicine.

  • 抑郁症,又称抑郁障碍,以情感沮丧、注意力分散、思维迟钝等认知障碍为特征,同时伴有睡眠障碍、食欲异常、异常疼痛疲劳等症状。全球约10亿人正在遭受精神障碍困扰。新冠疫情后,抑郁症患者激增5300万,增幅高达27.6%。WHO将重度抑郁症列为全球疾病负担的第三大原因,并预计到2030年后将排名第一[1]。抑郁症的发病病机是多因素的,抑郁症发病时大脑中单胺类神经递质如5-羟色胺(5-hydroxytryptamine,5-HT)及其受体、去甲肾上腺素(norepinephrine,NE)、多巴胺(dopamine,DA)等含量明显降低,血浆皮质醇含量升高,交感神经系统和下丘脑—垂体—肾上腺轴[hypothalamic-pituitary-adrenal (HPA) axis]功能活跃,诱发炎症反应和氧化应激,进而影响神经可塑性,加重抑郁症状。脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)不足会改变突触可塑性,减少突触间联系,导致神经系统功能进一步紊乱。肠道菌群功能紊乱也可以影响HPA轴功能以及炎性因子水平,或者通过脑肠轴影响大脑神经系统,进而促进抑郁症的发生发展[12]。目前使用的抗抑郁药物如氟西汀、舍曲林、氟伏沙明、西酞普兰等通过抑制单胺类神经递质在突触前膜的再摄取产生抗抑郁作用,然而存在起效慢、治愈率低、不良反应较大、依从性不足等问题。因此,探寻高效安全的抗抑郁药物已经迫在眉睫。

    挥发油,又称精油,是一类具有挥发性的小分子活性化合物组成的次生代谢物,具有浓烈的香味和气味的油状液体物质的总称。挥发油治疗抑郁症具有明显优势,如挥发油富含的亲脂性小分子化合物,易于透过血脑屏障,能迅速入脑,发挥抗抑郁作用;挥发油具有独特的芳香气味,使抑郁患者产生愉悦感,改善治疗依从性;挥发油可直接刺激嗅觉神经,促进大脑神经递质和激素的释放,调节BDNF和促炎细胞因子等,发挥多靶点和多途径的抗抑郁作用[3]。此外,挥发油衍生的芳香疗法涵盖多种给药方式,如涂抹法、揉搓法、漱口法、药浴法、吸嗅法等。芳香疗法可通过口腔、鼻、皮肤影响大脑皮层边缘和神经递质,最终改善大脑抑郁样病症[4]。因此,挥发油在新型抗抑郁药的开发中具有重要价值。本文系统综述了中药挥发油抗抑郁有效成分及其作用机制,以期为潜在的抗抑郁药物开发提供科学依据。

    目前用于抗抑郁的植物挥发油有30多种,来自不同的科属,如唇形科、伞形科、芸香科、木犀科等。植物挥发油主要由单萜类和倍半萜类组成。

    天然植物挥发油中,单萜类化合物(表1)主要包括:芳樟醇、柠檬烯、薄荷醇、香叶醇、紫苏醛、β-罗勒烯、桉油精、α-蒎烯、樟脑、麝香草酚。芳樟醇是芳香植物挥发性物质中含量最多的成分之一,主要来自玫瑰木、芫荽、罗勒、薰衣草等,而在迷迭香、柠檬、白芷中芳樟醇含量较低,分别为2.4%、3.8%、0.9%[5]。柠檬烯广泛地存在于多种芳香植物中,是分布最广的萜烯类化合物。柠檬烯是柑橘属药食同源植物挥发油中的主要成分,相对含量在37%~89%,其在挥发油中的具体含量取决于柑橘属药食同源植物的品种,比如:化橘红挥发油中柠檬烯含量高,为75%~89%;佛手挥发油中柠檬烯含量低,为37%~55%[6]。α-蒎烯是松节油的主要成分,作为重要化工原料被广泛应用于医药、香料、日用化学等行业。其中桉树、苏合香和白芷挥发油中α-蒎烯分别为11.4%、15.6%、7.0%。β-蒎烯是虎皮楠精油的主要成分之一,其在小鼠体内能够与单胺能系统相互作用,产生抗抑郁和镇静作用[7]。β-蒎烯还可以通过激活β-肾上腺素受体、多巴胺D1受体,增加DA的释放,产生抗抑郁作用[8]

    表  1  挥发油中主要的单萜类化合物
    序 号成 分植物来源分子式CAS号作用机制参考文献
    1芳樟醇薰衣草C10H18O78-70-6增加PKA和CREB磷酸化[5,9]
    2柠檬烯甜橙,薰衣草,佛手柑C10H16138-86-3降低单胺递质水平,下调BDNF[10]
    3薄荷醇薄荷C10H20O2216-51-5作用于GABA,5-HT,多巴胺能系统[11]
    4香叶醇天竺葵,柠檬草C10H18O106-24-1影响PI3K/Akt和PKA信号通路[12]
    5紫苏醛紫苏C10H14O18031-40-8增加单胺神经递质,上调BDNF/TrkB表达[13]
    6β-罗勒烯罗勒C10H1613877-91-3影响PI3K/Akt和PKA信号通路[12]
    7桉油精柠檬草,迷迭香C10H18O470-82-6影响GABA/BZ受体[1415]
    8α-蒎烯松针,薰衣草,柑橘C10H167785-70-8上调钙结合蛋白,作用于GABA能神经元[16]
    9樟脑鼠尾草,薰衣草C10H16O464-48-2作用于多巴胺能,去甲肾上腺素能系统[1718]
    10麝香草酚牛至,百里香C10H14O89-83-8上调中枢神经递质水平和抑制NLRP3表达[1920]
    PKA:蛋白激酶A;CREB:环磷腺苷效应元件结合蛋白;GABA:γ-氨基丁酸;PI3K:磷酸肌醇3-激酶;Akt:蛋白激酶B;TRKB:原肌球蛋白受体激酶B;BZ:苯二氮䓬类;NLRP3:NOD样受体热蛋白结构域相关蛋白3
    下载: 导出CSV 
    | 显示表格

    天然植物挥发油中,具有抗抑郁作用的倍半萜类化合物(表2)主要为β-石竹烯、广藿香醇、α-kessyl alcohol 、β-榄香烯和δ-杜松烯,其中β-石竹烯和广藿香醇的抗抑郁研究较多。β-石竹烯是一种天然的双环倍半萜烯,是许多挥发油中的常见成分。峨参精油以β-石竹烯(23.6%)、氧化石竹烯(12.3%)和δ-石竹烯(12.1%)为主要成分,大鼠连续吸入峨参精油(1%,3%)21 d,明显改善东莨宕碱诱导的记忆障碍、焦虑和抑郁[21]。广藿香,“十大南药”之一,为唇形科植物广藿香的干燥地上部分。广藿香醇是广藿香挥发油的主要成分,具有抗炎、抗氧化、抗抑郁的作用[22]。β-榄香烯在精油中分布广泛,其在天女玉兰精油中含量为22.1%,在红椿精油中含量为24.9%[23]

    表  2  挥发油中主要的倍半萜化合物
    序 号 成 分 植物来源 分子式 CAS号 作用机制 参考文献
    1 β-石竹烯 峨参,迷迭香 C15H24 87-44-5 上调 5-HT1A,增加5-HT含量 [21,24]
    2 广藿香醇 广藿香 C15H26O 5986-55-0 提高脑内多巴胺水平 [25]
    3 α-kessyl alcohol 缬草 C15H26O2 3321-65-1 尚不明确 [26]
    4 β-榄香烯 红椿, 天女玉兰 C15H24 515-13-9 增加5-HT含量,增加脑组织中BDNF和5-HT1A表达 [23,27]
    5 δ-杜松烯 丁香蒲桃,刺果峨参 C15H24 483-76-1 尚不明确 [26]
    5-HT1A:5-羟色胺受体1A;BDNF:脑源性神经营养因子
    下载: 导出CSV 
    | 显示表格

    抗抑郁作用的挥发油成分多样,还有一些其他结构,如α-细辛醚、β-细辛醚、丁香酚、香兰素、肉桂醛、甲基丁香酚、茴香脑、藁本内酯、丁基苯酞、洋川芎内酯等。α-细辛醚和β-细辛醚是石菖蒲挥发油主要药效物质,石菖蒲药材中含有β-细辛醚(1.1%~3.5%)、α-细辛醚(0.03%~1.0%)[28]。玫瑰精油的主要成分是2-苯乙醇、香茅醇、香叶醇、甲基丁香酚和丁香酚,其可通过HPA轴和5-HT系统而抗抑郁[15]。肉桂挥发油中发现了15种化合物,其主要活性成分是反式肉桂醛(含量87.3%)。研究表明,肉桂挥发油在0.5、1.0和2.0 mg/kg剂量下,可改善小鼠抑郁样行为[2930]。丁基苯肽来源于当归、川芎等伞形科植物,具有保护神经元、促进BDNF表达[31]。洋川芎内酯是一类存在于伞科植物中的苯酞类分子,在川芎中含量最高,其对H2O2诱导的PC12细胞具有明显的保护作用[32]

    抑郁症的发病机制十分复杂,目前认为其与遗传、内分泌、免疫、社会心理、文化等多种因素有关。抑郁症的发病机制假说包括单胺类神经递质假说、神经营养因子假说、HPA轴机制假说、神经炎症假说等。中药挥发油(表3)作用于上述途径产生抗抑郁作用,改善抑郁样症状。

    表  3  具有抗抑郁作用的中药挥发油
    植 物 挥发油的主要成分 动物模型 行为学测试 给药方式 作用机制
    薰衣草 芳樟醇、乙酸芳樟醇、月桂烯、4-松油[15] CUMS大鼠 SPT
    FST
    吸入 抑制电压依赖性钙通道,激活PKA和MAPK等激酶,激活转录因子CREB,改善神经可塑性[9,48]
    紫苏 紫苏醛、1,4-桉叶醇、乙醛、缩二乙醇、D-柠檬烯、桉树醇[61]
    CUMS大鼠 SPT
    FST
    吸入 增加海马区和大脑皮层中的5-HT、DA、
    NE递质水平,并上调BDNF/TrkB通路[13]
    CUMS小鼠 SPT
    TST
    FST
    吸入 逆转CUMS小鼠海马5-HT和5-HIAA的变化,降低IL-6、IL-1β、TNF-α水平[55]
    佛手 柠檬烯、芳樟醇、乙酸芳樟酯[15] CUMS大鼠 SPT
    OFT
    灌胃 调节脑内神经递质、抑制 HPA轴亢进、促进BDNF产生、抗氧化应激、抗炎[43]
    肉桂 反式肉桂醛、β-姜黄酮、邻肉桂醛二乙缩醛和邻甲氧基肉桂醛[31] CUMS大鼠 SPT
    OFT
    灌胃 抗氧化,抑制NF-κB/NLRP3激活和降低
    环氧合酶-2[54]
    藏红花 苯乙醇、2-(2-羟基丙氧基)-1-丙醇、2-
    (3-氧-2-戊基环戊基)乙酸甲酯、1,3,3-
    三甲基-2-(2-甲基-环丙基)-环己烯、
    番红花醛[46]
    CUMS小鼠 OFT
    SPT
    TST
    FST
    吸入 调节MAPK-CREB1-BDNF信号通路[46]
    降低TNF-α、IFN-γ及IL-1β、IL-6、IL-12、IL-17a水平[57]
    荆芥 薄荷酮、胡薄荷酮[56] CUMS小鼠 SPT
    FST
    TST
    灌胃 抑制NLRP3炎症小体和小胶质细胞激活,抑制神经炎症;显著下调海马部位ASC、Caspase-1蛋白表达,抑制细胞焦亡[56]
    大蒜 二烯丙基二硫、二烯丙基二硫醚和二烯丙基三硫醚[60] CUMS大鼠 OFT
    SPT
    灌胃 调节SCFAs浓度,影响肠屏障功能和肠道
    微生物[60]
    石菖蒲 α-细辛醚、β-细辛醚、甲基丁香酚、
    榄香素[62]
    CUMS大鼠 OFT 灌胃 降低血清中促炎因子含量,增加中脑及纹状体中5-HT、5-HIAA和DA的含量[62,63]
    薄荷 L-薄荷醇、左旋薄荷酮[64] CUMS小鼠 FST
    OFT
    SLT
    灌胃 升高海马体中NE和5-HT浓度,抑制IL-1β、IL-6和TNF-α表达[64]
    积雪草 石竹烯、法呢醇、榄香烯、长叶烯[65] 利血平抑郁大鼠模型 ESCT 灌胃 降低单胺氧化酶活性,抑制血清CORT升高,增强单胺类神经递质功能[65]
    苍艾 丁子香酚、1,8-桉叶素、广藿香醇、乙酰丁香酚、芳樟醇、乙酸芳樟醇、β-石竹烯、萜品烯-4-醇、α-松油醇[66] CUMS大鼠 TST
    FST
    SPT
    吸入 调节DA和5-HT代谢,抑制色氨酸降解以及抑制小胶质细胞炎症[66,67]
    沉香 柏木脑、α-布藜烯、α-柏木烯、
    广藿香萜醇[68]
    CUMS小鼠 TST
    FST
    吸入
    腹腔注射
    调控5-HT、GABAA、Glu神经递质水平以及其受体及转运体蛋白GluR1、VGluT1表达[69]
    降低HPA轴下游ACTH和CORT浓度[41]
    牛至 麝香草酚、γ-萜品烯、冰片醇、
    半胱氨酸、香芹酚[70]
    CUMS大鼠 SPT
    FST
    腹腔注射 抑制单胺神经递质再摄取和降解[70]
    迷迭香 树脑、樟脑、α-蒎烯、莰烯、α-松油醇[71] dl -4-氯苯丙氨酸诱导失眠模型 OFT 灌胃 上调5-HT1A受体表达,增加5-HT,GA,
    DA水平[24]
    广藿香 广藿香醇、δ-愈创木烯、α-古芸烯、
    β-石竹烯、β-广藿香[72]
    CUMS大鼠和CMS小鼠 SPT
    FST
    TST
    腹腔注射 抑制NLRP3炎症小体和小胶质细胞活化[58]
    CUMS:慢性不可预知温和应激;SPT:糖水偏好试验;FST:强迫游泳试验;TST:悬尾实验;OFT:旷场试验;ESCT:电刺激角膜试验
    下载: 导出CSV 
    | 显示表格

    单胺类神经递质假说认为抑郁症的发生与中枢神经系统内单胺类神经递质(NE、DA、5-HT)含量减少、功能异常、受体敏感度降低等密切相关[33]。脑内5-HT在神经末梢合成,色氨酸羟化酶催化色氨酸生成5-羟色氨酸,再经多巴脱羧酶催化脱羧形成5-HT。通常以增加脑内5-HT含量,作为潜在抗抑郁药物的判断标准之一[34]

    挥发油可通过影响5-HT的合成、传递以及在突触后膜的作用来达到抗抑郁作用。广藿香醇对东莨菪碱诱导的小鼠认知和记忆障碍具有保护作用,其能够提高DA和5-HT水平,进而改善抑郁症症状[25]。积雪草挥发油主要通过降低单胺氧化酶活性,抑制血清皮质酮(corticosterone,CORT)升高,从而增强单胺类神经递质功能发挥抗抑郁作用。肉豆蔻精油通过抑制单胺氧化酶的活性,减少单胺类神经递质的降解,增加大脑5-HT、DA、NE的含量来发挥抗抑郁症作用[35]。α-细辛醚通过激活肾上腺素能α1、α2受体和5-HT1A受体,增加5-HT和DA合成,产生抗抑郁作用[36]。此外,薰衣草挥发油中的芳樟醇和β-蒎烯,通过升高5-HT水平,发挥抗抑郁作用。红椿精油(20,40,80 mg/kg)通过增加海马中DA、NE、5-HT和BDNF水平,改善慢性温和应激模型(chronic mild stress, CMS)大鼠抑郁症状,作用呈剂量依赖性[37]。在地塞米松诱导的抑郁模型中,甲基丁香酚通过激活色氨酸羟化酶,促进5-HT合成,激活D1多巴胺能受体、α受体,改善成年雌性小鼠的抑郁样行为[38]。八角茴香挥发油中的茴香脑增加大脑中5-HT和DA含量,提高突触间隙5-HT浓度,产生抗抑郁作用[39]

    HPA 轴是神经内分泌系统的重要组成部分,主要通过影响各级内分泌激素水平来调节体内各种应激活动。抑郁症患者HPA轴功能持续性亢进,导致促肾上腺皮质激素释放激素(corticotropin-releasing hormone, CRH)、促肾上腺皮质激素(adrenocorticotropic hormone, ACTH)、糖皮质激素水平升高,损伤神经细胞功能;CORT水平升高可损伤海马、蓝斑等使抑郁症患者产生认知功能障碍、情绪消沉、失眠等症状[2]。在急性应激或持续的HPA激活下,皮质醇还可以通过增强5-HT转运蛋白的合成来促进5-HT再摄取,导致突触间隙中5-HT水平降低从而诱发抑郁。氧化应激可导致HPA轴异常激活,因而抑制氧化应激,有助于维持HPA轴的正常功能[40]

    中药挥发油可通过抑制HPA轴过度激活来缓解模型大鼠抑郁样行为。沉香挥发油对束缚应激诱导的小鼠模型具有抗抑郁作用, 其作用与降低CRH及其受体表达和抑制HPA轴过度激活有关[41]。沉香联合木香挥发油也可通过降低血清ACTH、CORT以及下丘脑CRH分泌,恢复海马中5-HT、DA、NE水平,抑制HPA轴过度激活,从而改善慢性不可预知温和应激(chronic unpredictable mild stress, CUMS)大鼠抑郁样行为[42]。佛手挥发油对CUMS大鼠所致抑郁行为的改善作用,主要与增加海马BDNF表达,降低血清CORT含量,减弱抑郁模型大鼠HPA轴的亢进程度有关[43]

    “抑郁症的神经营养假说”认为神经营养支持的受损是重度抑郁症相关突触和脑相关改变的关键机制。抑郁症会引起海马及前额叶皮层中BDNF含量降低,海马中BDNF含量下降更为显著,导致海马体积减小、CA3区神经元增殖减少、齿状回区神经细胞凋亡。BDNF含量降低也可导致突触可塑性功能障碍,兴奋性神经元和谷氨酸减少,最终导致抑郁症[4445]

    挥发油通过调节脑源性神经营养因子缓解抑郁症。研究表明,藏红花精油可显著缓解CUMS暴露小鼠的抑郁症状,部分恢复海马神经元损伤,其中以4%藏红花精油效果最好;其抗抑郁机制主要依赖于丝裂原活化蛋白激酶(mitogen activated protein kinase, MAPK)-环磷腺苷效应元件结合蛋白(cAMP-response element binding protein,CREB)1-BDNF信号通路的调节[46]。栀子挥发油有效增强了蛋白激酶A(protein kinase A, PKA)、p-CREB和BDNF的表达,选择性PKA抑制剂H-89可阻断栀子挥发油的抗抑郁作用。可见,栀子挥发油通过PKA-CREB-BDNF信号通路改善抑郁样行为[47]。薰衣草精油通过激活PKA和MAPK等细胞内信号激酶,调节电压依赖性钙通道,并激活转录因子CREB,改善神经可塑性[48]。β-细辛醚(25 mg/kg)显著改善CUMS模型大鼠抑郁样行为,其作用机制与激活海马ERK1/2-CREB信号通路,增加BDNF mRNA 和蛋白表达有关[49]

    抑郁症伴随明显的神经炎性病变和氧化应激。抑郁障碍患者存在神经细胞氧化应激损伤,包括脂质氧化程度加重,活性氧(reactive oxygen species, ROS)和丙二醛水平升高,以及总抗氧化能力减弱,谷胱甘肽过氧化物酶和过氧化氢酶活性降低。过量的ROS可破坏神经细胞膜脂质、蛋白质和核酸,导致大脑海马神经元损伤, 进而引起抑郁症[50]。促炎细胞因子一方面激活HPA轴,增加皮质醇的合成,另一方面促使色氨酸降解和5-HT合成减少,最终导致神经炎症及神经退化,造成情绪和认知障碍[51]。促炎细胞因子如IL-1β、TNF-α等,可导致神经胶质细胞ROS和过氧化物的产生急剧增加, 进一步加重炎症。促炎因子和氧化应激协同作用下,最终影响神经元存活环境并导致抑郁症的发生。

    植物挥发油可通过抑制氧化应激和神经炎症来缓解抑郁症。佛手柑精油可降低抑郁焦虑模型大鼠海马、前额叶皮层和血浆中促炎细胞因子水平,抑制海马和前额叶皮层氧化应激,发挥抗抑郁、抗焦虑作用[52]。薰衣草和迷迭香精油,可以增强神经细胞自由基清除能力,抑制氧化应激[53]。肉桂精油中肉桂醛也具有抗氧化能力,并通过抑制NF-κB和NOD样受体蛋白3(Nod-like receptor protein 3,NLRP3)炎性途径激活和降低环氧合酶-2活性逆转大鼠抑郁样行为[54]。紫苏精油可显著降低抑郁小鼠血清IL-6、IL-1β和海马TNF-α水平,其抗抑郁与抗炎作用有关[55]。荆芥挥发油能改善小鼠抑郁样行为,其作用与抑制NLRP3炎症小体和小胶质细胞激活,从而减轻神经炎症反应与神经元损伤有关[56]。藏红花挥发油中藏红花素和藏红花醛可以降低抑郁小鼠血清中TNF-α、IFN-γ和白细胞介素如IL-1β、IL-6、IL-12和IL-17a水平,从而抑制神经炎症[57]。广藿香醇通过激活哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)信号通路抑制自噬,修复突触和增大自噬通量,在CUMS大鼠中发挥抗抑郁作用[22]。广藿香醇抑制NLRP3炎症小体介导的小胶质细胞活化,改善海马体的神经发生障碍,缓解CMS暴露小鼠的抑郁样行为[58]

    抑郁症与肠道菌群稳态失调有关,肠道菌群稳态失调主要指微生物群不平衡和相应的功能变化而导致的微生物多样性改变。抑郁症中,厚壁菌门、放线菌门和拟杆菌门是受影响最大的细菌门。肠道和大脑之间的交流是双向的,微生物群及其衍生代谢物在肠—脑信号传导中起关键调节作用,因而提出肠道菌群—肠—脑轴的概念。短链脂肪酸(short chain fatty acids, SCFAs)与抑郁症密切相关,重度抑郁症患者的SCFAs减少,而给予SCFAs(尤其是丁酸盐)可改善抑郁相关的肠道通透性和HPA轴反应性来产生抗抑郁作用。由肠道微生物群直接或间接产生的神经递质(如5-HT和GABA)可以通过调节局部肠道生理和调节远端器官的功能来影响情绪行为[59]

    研究发现,大蒜精油可以降低炎症因子IL-1β和TNF-α,降低脑内NLRP3炎症小体相关蛋白的表达,调节SCFAs浓度,影响肠屏障功能和肠道微生物进而改善抑郁样行为[60]。挥发油可以调节肠道菌群平衡,通过“肠道菌群—肠—脑轴”调节5-HT等神经递质的释放,影响HPA轴的活动,参与大脑情绪、认知和记忆的调节。结合脑肠轴理论,通过改善肠道微生物来防治抑郁症等神经精神疾病具有重要意义和应用前景。

    挥发油具有镇定、舒缓情绪的功效。罗勒挥发油具有缓解人体抑郁情绪的作用,能有效改善抑郁状态,志愿者在经过香薰治疗后的抑郁评分明显下降[73]。通过对46个健康个体使用汉密顿抑郁量表评分以及功能性近红外光谱技术检测大脑皮质兴奋性,证明吸入苍艾挥发油可显著改善人体的抑郁状态[74]。紫苏挥发油可有效降低患者的冷漠和抑郁评分,减轻抑郁焦虑状态,保护健康心理状态[75]。薰衣草挥发油有较多临床前抗抑郁的研究报道,而且,至2020年5月,已有7项临床试验,研究了852例患者,在其中6项试验中,证实了薰衣草治疗抑郁症的有效性[76]。越来越多的临床使用案例表明挥发油具有抗抑郁潜力,吸入挥发油也可作为辅助治疗抑郁症的手段。挥发油芳香疗法和抗抑郁药物帕罗西汀同时使用,具有更好的抗抑郁作用[77]。可见,中药挥发油在临床治疗抑郁症方面具有重大潜力。

    中药挥发油可通过调节单胺神经递质及其受体的异常表达、调节HPA轴的异常、改善海马神经元的可塑性、降低炎症因子水平、调节肠道菌群—肠—脑轴等发挥多靶点、多途径、多层次的抗抑郁作用。然而,挥发油在实际应用过程中也存在一些问题,如有效成分含量高低不一,色泽气味差异较大;精油不易贮存,有效成分易挥发和易光解,导致药效不稳定;给药剂量和治疗时长不明确,缺乏体内药代毒理数据来支撑安全用药等。因而,需要注重中药材的产地与品种、前处理过程、投料部位、提取工艺、提取设备等环节的规范化、标准化,严把各个可能引起中药挥发油质量问题的环节,完善中药挥发油的质量评价标准,使中药挥发油的质量稳定。此外,采用基因、蛋白等多组学及网络药理学方法,结合药理毒理实验进行深入研究,进一步阐明中药挥发油抗抑郁的作用机制及安全性,为潜在的抗抑郁药物新药研发提供方向。

  • 表  1   挥发油中主要的单萜类化合物

    序 号成 分植物来源分子式CAS号作用机制参考文献
    1芳樟醇薰衣草C10H18O78-70-6增加PKA和CREB磷酸化[5,9]
    2柠檬烯甜橙,薰衣草,佛手柑C10H16138-86-3降低单胺递质水平,下调BDNF[10]
    3薄荷醇薄荷C10H20O2216-51-5作用于GABA,5-HT,多巴胺能系统[11]
    4香叶醇天竺葵,柠檬草C10H18O106-24-1影响PI3K/Akt和PKA信号通路[12]
    5紫苏醛紫苏C10H14O18031-40-8增加单胺神经递质,上调BDNF/TrkB表达[13]
    6β-罗勒烯罗勒C10H1613877-91-3影响PI3K/Akt和PKA信号通路[12]
    7桉油精柠檬草,迷迭香C10H18O470-82-6影响GABA/BZ受体[1415]
    8α-蒎烯松针,薰衣草,柑橘C10H167785-70-8上调钙结合蛋白,作用于GABA能神经元[16]
    9樟脑鼠尾草,薰衣草C10H16O464-48-2作用于多巴胺能,去甲肾上腺素能系统[1718]
    10麝香草酚牛至,百里香C10H14O89-83-8上调中枢神经递质水平和抑制NLRP3表达[1920]
    PKA:蛋白激酶A;CREB:环磷腺苷效应元件结合蛋白;GABA:γ-氨基丁酸;PI3K:磷酸肌醇3-激酶;Akt:蛋白激酶B;TRKB:原肌球蛋白受体激酶B;BZ:苯二氮䓬类;NLRP3:NOD样受体热蛋白结构域相关蛋白3
    下载: 导出CSV

    表  2   挥发油中主要的倍半萜化合物

    序 号 成 分 植物来源 分子式 CAS号 作用机制 参考文献
    1 β-石竹烯 峨参,迷迭香 C15H24 87-44-5 上调 5-HT1A,增加5-HT含量 [21,24]
    2 广藿香醇 广藿香 C15H26O 5986-55-0 提高脑内多巴胺水平 [25]
    3 α-kessyl alcohol 缬草 C15H26O2 3321-65-1 尚不明确 [26]
    4 β-榄香烯 红椿, 天女玉兰 C15H24 515-13-9 增加5-HT含量,增加脑组织中BDNF和5-HT1A表达 [23,27]
    5 δ-杜松烯 丁香蒲桃,刺果峨参 C15H24 483-76-1 尚不明确 [26]
    5-HT1A:5-羟色胺受体1A;BDNF:脑源性神经营养因子
    下载: 导出CSV

    表  3   具有抗抑郁作用的中药挥发油

    植 物 挥发油的主要成分 动物模型 行为学测试 给药方式 作用机制
    薰衣草 芳樟醇、乙酸芳樟醇、月桂烯、4-松油[15] CUMS大鼠 SPT
    FST
    吸入 抑制电压依赖性钙通道,激活PKA和MAPK等激酶,激活转录因子CREB,改善神经可塑性[9,48]
    紫苏 紫苏醛、1,4-桉叶醇、乙醛、缩二乙醇、D-柠檬烯、桉树醇[61]
    CUMS大鼠 SPT
    FST
    吸入 增加海马区和大脑皮层中的5-HT、DA、
    NE递质水平,并上调BDNF/TrkB通路[13]
    CUMS小鼠 SPT
    TST
    FST
    吸入 逆转CUMS小鼠海马5-HT和5-HIAA的变化,降低IL-6、IL-1β、TNF-α水平[55]
    佛手 柠檬烯、芳樟醇、乙酸芳樟酯[15] CUMS大鼠 SPT
    OFT
    灌胃 调节脑内神经递质、抑制 HPA轴亢进、促进BDNF产生、抗氧化应激、抗炎[43]
    肉桂 反式肉桂醛、β-姜黄酮、邻肉桂醛二乙缩醛和邻甲氧基肉桂醛[31] CUMS大鼠 SPT
    OFT
    灌胃 抗氧化,抑制NF-κB/NLRP3激活和降低
    环氧合酶-2[54]
    藏红花 苯乙醇、2-(2-羟基丙氧基)-1-丙醇、2-
    (3-氧-2-戊基环戊基)乙酸甲酯、1,3,3-
    三甲基-2-(2-甲基-环丙基)-环己烯、
    番红花醛[46]
    CUMS小鼠 OFT
    SPT
    TST
    FST
    吸入 调节MAPK-CREB1-BDNF信号通路[46]
    降低TNF-α、IFN-γ及IL-1β、IL-6、IL-12、IL-17a水平[57]
    荆芥 薄荷酮、胡薄荷酮[56] CUMS小鼠 SPT
    FST
    TST
    灌胃 抑制NLRP3炎症小体和小胶质细胞激活,抑制神经炎症;显著下调海马部位ASC、Caspase-1蛋白表达,抑制细胞焦亡[56]
    大蒜 二烯丙基二硫、二烯丙基二硫醚和二烯丙基三硫醚[60] CUMS大鼠 OFT
    SPT
    灌胃 调节SCFAs浓度,影响肠屏障功能和肠道
    微生物[60]
    石菖蒲 α-细辛醚、β-细辛醚、甲基丁香酚、
    榄香素[62]
    CUMS大鼠 OFT 灌胃 降低血清中促炎因子含量,增加中脑及纹状体中5-HT、5-HIAA和DA的含量[62,63]
    薄荷 L-薄荷醇、左旋薄荷酮[64] CUMS小鼠 FST
    OFT
    SLT
    灌胃 升高海马体中NE和5-HT浓度,抑制IL-1β、IL-6和TNF-α表达[64]
    积雪草 石竹烯、法呢醇、榄香烯、长叶烯[65] 利血平抑郁大鼠模型 ESCT 灌胃 降低单胺氧化酶活性,抑制血清CORT升高,增强单胺类神经递质功能[65]
    苍艾 丁子香酚、1,8-桉叶素、广藿香醇、乙酰丁香酚、芳樟醇、乙酸芳樟醇、β-石竹烯、萜品烯-4-醇、α-松油醇[66] CUMS大鼠 TST
    FST
    SPT
    吸入 调节DA和5-HT代谢,抑制色氨酸降解以及抑制小胶质细胞炎症[66,67]
    沉香 柏木脑、α-布藜烯、α-柏木烯、
    广藿香萜醇[68]
    CUMS小鼠 TST
    FST
    吸入
    腹腔注射
    调控5-HT、GABAA、Glu神经递质水平以及其受体及转运体蛋白GluR1、VGluT1表达[69]
    降低HPA轴下游ACTH和CORT浓度[41]
    牛至 麝香草酚、γ-萜品烯、冰片醇、
    半胱氨酸、香芹酚[70]
    CUMS大鼠 SPT
    FST
    腹腔注射 抑制单胺神经递质再摄取和降解[70]
    迷迭香 树脑、樟脑、α-蒎烯、莰烯、α-松油醇[71] dl -4-氯苯丙氨酸诱导失眠模型 OFT 灌胃 上调5-HT1A受体表达,增加5-HT,GA,
    DA水平[24]
    广藿香 广藿香醇、δ-愈创木烯、α-古芸烯、
    β-石竹烯、β-广藿香[72]
    CUMS大鼠和CMS小鼠 SPT
    FST
    TST
    腹腔注射 抑制NLRP3炎症小体和小胶质细胞活化[58]
    CUMS:慢性不可预知温和应激;SPT:糖水偏好试验;FST:强迫游泳试验;TST:悬尾实验;OFT:旷场试验;ESCT:电刺激角膜试验
    下载: 导出CSV
  • [1]

    Malhi GS, Mann JJ. Depression[J]. Lancet, 2018, 392(10161): 2299-2312. doi: 10.1016/S0140-6736(18)31948-2

    [2] Wang CF, Tian WG, Chen JP, et al. Research progress on antidepressive effect and mechanism of traditional Chinese medicine[J]. Chin Tradit Herb Drugs (中草药), 2022, 53(9): 2890-2901.
    [3]

    Liang XL, Wang XL, Zhao GW, et al. Research progress of essential oil as a new complementary therapy in the treatment of depression[J]. Mini Rev Med Chem, 2021, 21(16): 2276-2289. doi: 10.2174/1389557521666210219161747

    [4] Zhou T, Xiong LH, Wei HM, et al. Research progress of aromatherapy in rehabilitation of depression patients[J]. Med Innov China (中国医学创新), 2023, 20(3): 170-175.
    [5]

    dos Santos ÉRQ, Maia JGS, Fontes-Júnior EA, et al. Linalool as a therapeutic and medicinal tool in depression treatment: a review[J]. Curr Neuropharmacol, 2022, 20(6): 1073-1092. doi: 10.2174/1570159X19666210920094504

    [6] Cao XM, Pan SY. Progress in research on secondary metabolites and biological activity of medicinal and edible Citrus plants[J]. Food Sci (食品科学), 2022, 43(23): 305-315.
    [7] Liao SL. Synthesis, biological activity and structure-activity relationships of novel (-)-β-pinene derivatives(新型(-)-β-蒎烯衍生物的合成、生物活性和构效关系研究)[D]. Beijing: China Academy of Forestry, 2017.
    [8]

    Guzmán-Gutiérrez SL, Bonilla-Jaime H, Gómez-Cansino R, et al. Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway[J]. Life Sci, 2015, 128: 24-29. doi: 10.1016/j.lfs.2015.02.021

    [9]

    Friedland K, Silani G, Schuwald A, et al. Neurotrophic properties of silexan, an essential oil from the flowers of lavender-preclinical evidence for antidepressant-like properties[J]. Pharmacopsychiatry, 2021, 54(1): 37-46. doi: 10.1055/a-1293-8585

    [10]

    Zhong Y, Zheng Q, Hu PY, et al. Sedative and hypnotic effects of compound Anshen essential oil inhalation for insomnia[J]. BMC Complement Altern Med, 2019, 19(1): 306. doi: 10.1186/s12906-019-2732-0

    [11]

    Wang WD, Jiang YY, Cai EB, et al. L-menthol exhibits antidepressive-like effects mediated by the modification of 5-HTergic, GABAergic and DAergic systems[J]. Cogn Neurodyn, 2019, 13(2): 191-200. doi: 10.1007/s11571-018-9513-1

    [12] Liu XS, Wang YL, Ma RJ, et al. Antidepressant effect and mechanism of the essential oil from Pelargonium graveolens and Ocimum basilicum L[J]. Nat Prod Res Dev (天然产物研究与开发), 2021, 33(11): 1829-1835,1945.
    [13]

    Zhong Y, Du Q, Wang ZQ, et al. Antidepressant effect of Perilla frutescens essential oil through monoamine neurotransmitters and BDNF/TrkB signal pathway[J]. J Ethnopharmacol, 2024, 318 (Pt A): 116840.

    [14] Hou MZ, Chang C, Chen LL, et al. Research progress in pharmacological effects of 1, 8-cineole[J]. Chin J Mod Appl Pharm (中国现代应用药学), 2021, 38(16): 2023-2032.
    [15]

    Lizarraga-Valderrama LR. Effects of essential oils on central nervous system: focus on mental health[J]. Phytother Res, 2021, 35(2): 657-679. doi: 10.1002/ptr.6854

    [16]

    Kong YY, Wang T, Wang R, et al. Inhalation of Roman chamomile essential oil attenuates depressive-like behaviors in Wistar Kyoto rats[J]. Sci China Life Sci, 2017, 60(6): 647-655. doi: 10.1007/s11427-016-9034-8

    [17]

    El Omari N, Balahbib A, Bakrim S, et al. Fenchone and camphor: Main natural compounds from Lavandula stoechas L. , expediting multiple in vitro biological activities[J]. Heliyon, 2023, 9 (11): e21222.

    [18]

    Seol GH, Shim HS, Kim PJ, et al. Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats[J]. J Ethnopharmacol, 2010, 130(1): 187-190. doi: 10.1016/j.jep.2010.04.035

    [19]

    Abbasi-Maleki S, Kadkhoda Z, Taghizad-Farid R. The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test[J]. J Tradit Complement Med, 2020, 10(4): 327-335. doi: 10.1016/j.jtcme.2019.01.003

    [20]

    Deng XY, Li HY, Chen JJ, et al. Thymol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice[J]. Behav Brain Res, 2015, 291: 12-19. doi: 10.1016/j.bbr.2015.04.052

    [21]

    Bagci E, Aydin E, Ungureanu E, et al. Anthriscus nemorosa essential oil inhalation prevents memory impairment, anxiety and depression in scopolamine-treated rats[J]. Biomedecine Pharmacother, 2016, 84 : 1313-1320.

    [22]

    Yang HM, Zhuo JY, Sun CY, et al. Pogostone attenuates TNF-α-induced injury in A549 cells via inhibiting NF-κB and activating Nrf2 pathways[J]. Int Immunopharmacol, 2018, 62: 15-22. doi: 10.1016/j.intimp.2018.06.029

    [23]

    Fonseca ECM, Ferreira LR, Figueiredo PLB, et al. Antidepressant effects of essential oils: a review of the past decade (2012-2022) and molecular docking study of their major chemical components[J]. Int J Mol Sci, 2023, 24(11): 9244. doi: 10.3390/ijms24119244

    [24]

    Li TT, Wang WF, Guo QT, et al. Rosemary (Rosmarinus officinalis L.) hydrosol based on serotonergic synapse for insomnia[J]. J Ethnopharmacol, 2024, 318 (Pt B): 116984.

    [25]

    Astuti P, Khairan K, Marthoenis M, et al. Antidepressant-like activity of patchouli oil var. tapak Tuan (Pogostemon cablin Benth) via elevated dopamine level: a study using rat model[J]. Pharmaceuticals, 2022, 15(5): 608. doi: 10.3390/ph15050608

    [26]

    Zhang YL, Long Y, Yu S, et al. Natural volatile oils derived from herbal medicines: a promising therapy way for treating depressive disorder[J]. Pharmacol Res, 2021, 164: 105376. doi: 10.1016/j.phrs.2020.105376

    [27]

    Zhang LY, Ai Y, Tang MH, et al. Antidepressant-like effect of aromatherapy with Magnolia sieboldii essential oils on depression mice[J]. Rec Nat Prod, 2023 (2): 241-255.

    [28] Shui SY, Zheng Q, Yue PF, et al. Research progress on mechanism of aromatic Chinese medicine and their active ingredients in refreshing the brain[J]. Chin Tradit Herb Drugs(中草药), 2021, 52(20): 6403-6412.
    [29]

    Sohrabi R, Pazgoohan N, Seresht HR, et al. Repeated systemic administration of the cinnamon essential oil possesses anti-anxiety and anti-depressant activities in mice[J]. Iran J Basic Med Sci, 2017, 20(6): 708-714.

    [30]

    Ma TY, Tang BJ, Wang Y, et al. Cinnamon oil solid self-microemulsion mediates chronic mild stress-induced depression in mice by modulating monoamine neurotransmitters, corticosterone, inflammation cytokines, and intestinal flora[J]. Heliyon, 2023, 9(6): e17125. doi: 10.1016/j.heliyon.2023.e17125

    [31] Zhang ZZ, Chen CL, Fu ZF. Research situation in pharmacological activities of dl-3-n-butylphthalide[J]. Chin J Clin Pharmacol (中国临床药理学杂志), 2017, 33(21): 2192-2195.
    [32] Xu LL, Che XH, Li N, et al. Research progress on the pharmacological activities of senkyunolides[J]. Res Pract Chin Med (现代中药研究与实践), 2022, 36(2): 98-102.
    [33] Song ZG, Zhou XQ, Yan DM, et al. Research progress on effective components and mechanisms of anti-depressive Chinese medicine[J]. China J Chin Mater Med (中国中药杂志), 2022, 47(5): 1184-1189.
    [34]

    Abbas G, Naqvi S, Erum S, et al. Potential antidepressant activity of Areca catechu nut via elevation of serotonin and noradrenaline in the hippocampus of rats[J]. Phytother Res, 2013, 27(1): 39-45. doi: 10.1002/ptr.4674

    [35] Liu RR, Sun AQ, Yu XJ, et al. Research progress on chemical composition and pharmacological effects of Myristicae Semen and predictive analysis on its quality marker[J]. Chin Tradit Herb Drugs (中草药), 2023, 54(14): 4682-4700.
    [36]

    Balakrishnan R, Cho DY, Kim IS, et al. Molecular mechanisms and therapeutic potential of α- and β-asarone in the treatment of neurological disorders[J]. Antioxidants, 2022, 11(2): 281. doi: 10.3390/antiox11020281

    [37]

    Duan DM, Chen LP, Yang XY, et al. Antidepressant-like effect of essential oil isolated from To ona Ciliata Roem. var. Yunnanensis[J]. J Nat Med, 2015, 69(2): 191-197. doi: 10.1007/s11418-014-0878-0

    [38]

    Oliveira MCN, Cavalcante IL, de Araújo AN, et al. Methyleugenol has an antidepressant effect in a neuroendocrine model: in silico and in vivo evidence[J]. Pharmaceuticals, 2023, 16(10): 1408. doi: 10.3390/ph16101408

    [39]

    Abbasi-Maleki S, Maleki SG. Antidepressant-like effects of Foeniculum vulgare essential oil and potential involvement of dopaminergic and serotonergic systems on mice in the forced swim test[J]. PharmaNutrition, 2021, 15: 100241. doi: 10.1016/j.phanu.2020.100241

    [40]

    Yao CH, Zhang YW, Sun XR, et al. Areca catechu L. ameliorates chronic unpredictable mild stress-induced depression behavior in rats by the promotion of the BDNF signaling pathway[J]. Biomedecine Pharmacother, 2023, 164: 114459.

    [41]

    Wang S, Wang CH, Yu ZX, et al. Agarwood essential oil ameliorates restrain stress-induced anxiety and depression by inhibiting HPA axis hyperactivity[J]. Int J Mol Sci, 2018, 19(11): 3468. doi: 10.3390/ijms19113468

    [42]

    Li HT, Li YH, Zhang XF, et al. The combination of Aquilaria sinensis (lour. ) Gilg and Aucklandia Costus Falc. volatile oils exerts antidepressant effects in a CUMS-induced rat model by regulating the hpa axis and levels of neurotransmitters[J]. Front Pharmacol, 2020, 11: 614413.

    [43] Gao HY, Tian Q. Antidepressant effect of fingered citron volatile in rats[J]. Chin J Exp Tradit Med Formulae (中国实验方剂学杂志), 2012, 18(7): 231-234.
    [44]

    Yang T, Nie Z, Shu HF, et al. The role of BDNF on neural plasticity in depression[J]. Front Cell Neurosci, 2020, 14: 82.

    [45]

    Castrén E, Monteggia LM. Brain-derived neurotrophic factor signaling in depression and antidepressant action[J]. Biol Psychiatry, 2021, 90(2): 128-136. doi: 10.1016/j.biopsych.2021.05.008

    [46]

    Chen ZW, Gu JP, Lin SS, et al. Saffron essential oil ameliorates CUMS-induced depression-like behavior in mice via the MAPK-CREB1-BDNF signaling pathway[J]. J Ethnopharmacol, 2023, 300: 115719. doi: 10.1016/j.jep.2022.115719

    [47]

    Ruan J, Liu L, Shan X, et al. Anti-depressant effects of oil from fructus gardeniae via PKA-CREB-BDNF signaling[J]. Biosci Rep, 2019, 39(4): BSR20190141. doi: 10.1042/BSR20190141

    [48]

    Müller WE, Sillani G, Schuwald A, et al. Pharmacological basis of the anxiolytic and antidepressant properties of Silexan®, an essential oil from the flowers of lavender[J]. Neurochem Int, 2021, 143: 104899. doi: 10.1016/j.neuint.2020.104899

    [49]

    Dong HY, Gao ZY, Rong H, et al. β-asarone reverses chronic unpredictable mild stress-induced depression-like behavior and promotes hippocampal neurogenesis in rats[J]. Molecules, 2014, 19(5): 5634-5649. doi: 10.3390/molecules19055634

    [50]

    Biswas SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox[J]? Oxid Med Cell Longev, 2016, 2016 : 5698931.

    [51]

    Leonard BE. Inflammation and depression: a causal or coincidental link to the pathophysiology[J]? Acta Neuropsychiatr, 2018, 30 (1): 1-16.

    [52] Chang J, Bian YH, Xu H, et al. Research progress of bergamot in treating depression[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2021, 32(8): 1971-1973.
    [53]

    Aponso M, Patti A, Hearn MTW, et al. Anxiolytic effects of essential oils may involve anti-oxidant regulation of the pro-oxidant effects of ascorbate in the brain[J]. Neurochem Int, 2021, 150: 105153. doi: 10.1016/j.neuint.2021.105153

    [54]

    Yao Y, Huang HY, Yang YX, et al. Cinnamic aldehyde treatment alleviates chronic unexpected stress-induced depressive-like behaviors via targeting cyclooxygenase-2 in mid-aged rats[J]. J Ethnopharmacol, 2015, 162: 97-103. doi: 10.1016/j.jep.2014.12.047

    [55]

    Ji WW, Li RP, Li M, et al. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice[J]. Chin J Nat Med, 2014, 12(10): 753-759.

    [56] Qin TT, Hu JW, Zeng JS, et al. Antidepressant effect of essential oil from Schizonepeta tenuifolia Briq. on lipopolysaccharide-induced depression model mice[J]. Nat Prod Res Dev (天然产物研究与开发), 2023, 35(9): 1480-1485.
    [57]

    Dobrek L, Głowacka K. Depression and its phytopharmacotherapy-a narrative review[J]. Int J Mol Sci, 2023, 24(5): 4772. doi: 10.3390/ijms24054772

    [58]

    He H, Xie XF, Zhang JQ, et al. Patchouli alcohol ameliorates depression-like behaviors through inhibiting NLRP3-mediated neuroinflammation in male stress-exposed mice[J]. J Affect Disord, 2023, 326: 120-131. doi: 10.1016/j.jad.2023.01.065

    [59]

    Liu LX, Wang HY, Chen XY, et al. Gut microbiota and its metabolites in depression: from pathogenesis to treatment[J]. EBioMedicine, 2023, 90: 104527. doi: 10.1016/j.ebiom.2023.104527

    [60]

    Huang YJ, Tsai MS, Panyod S, et al. Garlic essential oil ameliorates depression-like behaviors in unpredictable chronic mild stress by modulating the brain NLRP3 inflammasome pathway and influencing the gut barrier and microbiota[J]. Food Funct, 2023, 14(15): 6998-7010. doi: 10.1039/D3FO00270E

    [61]

    Ahmed HM, Tavaszi-Sarosi S. Identification and quantification of essential oil content and composition, total polyphenols and antioxidant capacity of Perilla frutescens (L.) Britt[J]. Food Chem, 2019, 275: 730-738. doi: 10.1016/j.foodchem.2018.09.155

    [62] Mei TT, Yan J, Chen J. Overview of active ingredients and pharmacological effects of Acorus tatarinowii[J]. Inf Tradit Chin Med (中医药信息), 2022, 39(4): 77-80,89.
    [63]

    Wen JX, Yang Y, Hao JJ. Acori Tatarinowii Rhizoma: a comprehensive review of its chemical composition, pharmacology, pharmacokinetics and toxicity[J]. Front Pharmacol, 2023, 14: 1090526. doi: 10.3389/fphar.2023.1090526

    [64]

    Xue JS, Li HY, Deng XY, et al. L-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters[J]. Pharmacol Biochem Behav, 2015, 134: 42-48. doi: 10.1016/j.pbb.2015.04.014

    [65] Liang JY, Li YJ, Liu YY, et al. Neuroprotection related activities and chemical constituents of Centella asiatica essential oil[J]. West China J Pharm Sci (华西药学杂志), 2022, 37(1): 53-57.
    [66]

    Chen BJ, Li JJ, Xie YH, et al. Cang-ai volatile oil improves depressive-like behaviors and regulates DA and 5-HT metabolism in the brains of CUMS-induced rats[J]. J Ethnopharmacol, 2019, 244: 112088. doi: 10.1016/j.jep.2019.112088

    [67]

    Zhang KL, Lei N, Li M, et al. Cang-ai volatile oil ameliorates depressive behavior induced by chronic stress through IDO-mediated tryptophan degradation pathway[J]. Front Psychiatry, 2021, 12: 791991. doi: 10.3389/fpsyt.2021.791991

    [68]

    Chen XQ, Wang CH, He QQ, et al. Chemical composition and potential properties in mental illness (anxiety, depression and insomnia) of agarwood essential oil: a review[J]. Molecules, 2022, 27(14): 4528. doi: 10.3390/molecules27144528

    [69] Gong B, Wang CH, Wu YL, et al. Anxiolytic and antidepressant effects of agarwood inhalation and its mechanism[J]. China J Chin Mater Med (中国中药杂志), 2023, 48(4): 1023-1031.
    [70]

    Amiresmaeili A, Roohollahi S, Mostafavi A, et al. Effects of oregano essential oil on brain TLR4 and TLR2 gene expression and depressive-like behavior in a rat model[J]. Res Pharm Sci, 2018, 13(2): 130-141. doi: 10.4103/1735-5362.223795

    [71]

    Elyemni M, Louaste B, Nechad I, et al. Extraction of essential oils of Rosmarinus officinalis L. by two different methods: hydrodistillation and microwave assisted hydrodistillation[J]. Sci World J, 2019, 2019: 3659432.

    [72]

    Kusuma HS, Mahfud M. GC-MS analysis of essential oil of Pogostemon cablin growing in Indonesia extracted by microwave-assisted hydrodistillation[J]. Int Food Res J, 2017, 24(4): 1525-1528.

    [73] Zheng JH. Study on extraction technology and antidepressant activity of essential oil from medicinal plants(药用植物挥发油的提取及抗抑郁活性研究)[D]. Guangdong: Guangdong Pharmaceutical University, 2018.
    [74]

    Wei YY, Cui JQ, Fu CY, et al. Effects of Cang-Ai volatile oil on depressed mood and cortical excitability in human[J]. Pharmacol Res Mod Chin Med, 2023, 6: 100215. doi: 10.1016/j.prmcm.2023.100215

    [75]

    Hashimoto M, Matsuzaki K, Kato S, et al. Twelve-month studies on Perilla oil intake in Japanese adults-possible supplement for mental health[J]. Foods, 2020, 9(4): 530. doi: 10.3390/foods9040530

    [76]

    Shamabadi A, Akhondzadeh S. Efficacy and tolerability of Lavandula angustifolia in treating patients with the diagnosis of depression: a systematic review of randomized controlled trials[J]. J Complement Integr Med, 2023, 20(1): 81-91. doi: 10.1515/jcim-2020-0498

    [77] Xu SM, Liu AH, Meng Y. A control study of paroxetine combined with aromatherapy and cognitive therapy for depression[J]. J Clin Psychosom Dis (临床心身疾病杂志), 2014, 20(1): 20-22.
表(3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  12
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-19
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回
x 关闭 永久关闭