Research progress on Helicobacter pylori CagA-induced gastric inflammation-cancer transformation
-
摘要:
幽门螺杆菌(Helicobacter pylori, Hp)目前已被列为能导致胃癌发生的Ⅰ类致病菌,近年来,对于幽门螺杆菌感染如何引起胃癌的发生和发展的研究备受瞩目。细胞毒力相关基因A(CagA)作为Hp的首要毒力因子,目前已经有大量研究报道其可以作为Hp产生胃部感染、定植以及促使宿主细胞发生炎癌转化等的关键外分泌毒素发挥功能,感染CagA阳性菌株的患者相比于CagA阴性菌株感染患者具有更高患肿瘤的概率。本文基于前期研究,从毒力蛋白CagA的递送方式、生物活性、免疫调控以及相关分子机制层面对Hp感染所诱导胃癌的发生以及发展过程进行阐述。
Abstract:Helicobacter pylori (Hp) is currently classified as a class I carcinogen that can cause gastric cancer, research in recent years on how Hp infection causes the occurrence and progression of gastric cancer has attracted much attention. As the primary virulence factor of Hp, cytotoxicity-associated gene A (CagA) has been extensively studied and reported to function as a key excreted toxin for Hp to induce gastric infection, colonization and promote inflammatory-carcinogenic transformation of host cells. Patients infected with CagA-positive strains have a higher risk of developing tumors compared to those infected with CagA-negative strains. Based on previous studies, this article further elaborates on the import process, biological activity, and related molecular mechanisms of virulence protein CagA in the occurrence and development of gastric cancer induced by Hp infection.
-
血管衰老是导致心血管疾病病死率较高的一个重要因素[1−2]。血管内皮细胞是血管壁的重要组成部分,与血液成分直接接触,易受血流中异常成分等因素的影响,诱发氧化应激,导致血管内皮细胞衰老。因此,内皮细胞衰老是血管衰老发展过程的关键步骤[3−4]。研究发现,过氧化氢(H2O2)作为一种强氧化剂,极易透过细胞膜扩散,对人脐静脉血管内皮细胞(human umbilical vein endothelial cells, HUVECs)造成氧化损伤[5−6],从而导致血管衰老。因此,采用抗氧化剂清除血管内皮细胞中的H2O2是改善血管衰老的有效途径。
黄芩苷(baicalin, BAI)是一种从唇形科植物黄芩(Scutellaria baicalensis Georgi)的干根中提取的黄酮类化合物,具有抗炎[7]、抗氧化[8]、抗病毒[9]和抗肿瘤[10]等多种生物活性。Zeng等[11]研究表明,黄芩苷对氧自由基具有良好的清除活性。Wang等[12]研究表明,黄芩苷能够抑制细胞中活性氧(reactive oxygen species, ROS)和丙二醛(malondialdehyde, MDA)的产生、促进超氧化物歧化酶的生成。然而黄芩苷溶解性差、半衰期短、生物利用度低[13],导致用药剂量大,在临床上需频繁给药,患者的依从性差,同时无法精确控制剂量,血液中容易出现药物浓度的峰谷现象,使得黄芩苷的不良反应增加。因此有必要进行剂型改造,以开发出疗效更佳的黄芩苷制剂。
R-(+)-硫辛酸(lipoic acid,LA)是硫辛酸合成酶在线粒体内合成的一类B族维生素,具有“万能抗氧化剂”的美誉。硫辛酸与其还原态化合物“二氢硫辛酸(DHLA)”都能有效消除数种不同的自由基,起到稳定血糖、增强肝功能、缓解疲劳以及抗衰老等功效[14]。在前期成功利用LA构建各类交联硫辛酸纳米载体(包括纳米囊泡和纳米胶囊)的工作基础上[15−16],本研究采用交联硫辛酸纳米胶囊负载具有优异抗氧化活性的黄芩苷,不仅解决了黄芩苷溶解性差、半衰期短、生物利用度低等问题,而且该纳米载体具有很好的生物相容性,在完成药物递送后,其降解产物二氢硫辛酸不仅不会损伤正常细胞,还能与黄芩苷联合发挥抗氧化功效。这一黄芩苷纳米药物的开发希望能够有效解决过氧化氢诱导的血管内皮细胞衰老问题,更好地抵抗血管衰老相关疾病。
1. 材 料
1.1 药品与试剂
黄芩苷(纯度:99%,陕西帕尼尔生物科技有限公司);R-(+)-硫辛酸(纯度:98%,贵阳沃尔森生物技术有限公司);30% H2O2(天津市科密欧化学试剂有限公司);MTT、细胞衰老β-半乳糖苷酶染色试剂盒(上海碧云天生物技术有限公司); RPMI 1640培养基(珀金埃尔默股份有限公司);胎牛血清、青链霉素混合液(100×)双抗(深圳市维森特科技有限公司);胰酶(上海源培生物科技股份有限公司);2′, 7′-二氯荧光素二乙酸酯(DCFH-DA,上海博世生物科技有限公司);脂质过氧化MDA检测试剂盒(北京索莱宝科技有限公司);细胞周期与细胞凋亡检测试剂盒(上海翌圣生物科技股份有限公司);BL521A型BCA蛋白定量试剂盒(上海Biosharp公司);尼罗红荧光染料(安徽泽升科技有限公司);Hoechst 33342(上海迈瑞尔化学技术有限公司);二甲基亚砜(DMSO,阿拉丁上海生物科技有限公司)。
1.2 仪 器
ME104/02型电子天平(上海梅特勒-托利多仪器有限公司); UV-2700型紫外-可见分光光度计(日本岛津有限公司); XDS-2B型倒置显微镜(日本尼康公司);倒置荧光显微镜(成都锦世昌祥科技有限公司);Variokanlux型多功能酶标仪(美国Thermo Fisher Scientific公司);SN267216酶联免疫检测仪(美国伯腾仪器有限公司); SHZ-88型流式细胞仪(艾森生物杭州有限公司);FS-1200N细胞破碎仪(上海生析超声仪器有限公司)。
1.3 细 胞
人脐静脉内皮细胞株(HUVECs,CRL-1730)来自美国模式培养物集存库(American Type Culture Collection,ATCC)。
2. 方法与结果
2.1 黄芩苷纳米药物的制备及表征
2.1.1 黄芩苷纳米药物的制备
(1)硫辛酸钠(LA-Na)的制备 精确称取LA(207.0 mg, 1 mmol)加至反渗透纯水(RO水)5.0 mL中振荡至溶解。将NaOH溶液(40.0 mg, 1 mmol)1 mL缓慢滴加到硫辛酸水溶液5.0 mL中,直至硫辛酸全部溶解。再用微量稀盐酸(1 mol/L)进行回滴,直至接近中性,且有明显的丁达尔现象。将所得溶液放置−20 ℃冰箱预冻,最后用冷冻干燥机冻干,得到LA-Na粉末。
(2)负载黄芩苷的交联硫辛酸纳米胶囊(BAI@cLANCs)的制备 精确称取LA-Na 45.5 mg于RO水5 mL振荡溶解,滴加微量稀盐酸(1 mol/L)至出现丁达尔现象,即形成空白纳米粒子(cLANCs)。配制二氯甲烷-乙酸乙酯(1∶1)溶液,取其125 μL,边超声边滴加至cLANCs溶液中,超声30 min。紫外光照2.5 h、透析24 h。在40 ℃的超声波清洗器中缓慢滴加黄芩苷粉末3.75 mg,超声30 min。离心(
3000 r/min,5 min)分离未包载到纳米粒子中的黄芩苷,上清液即为BAI@cLANCs溶液。溶液在激光笔照射下呈现出良好的丁达尔效应(图1-A),冻干可得BAI@cLANCs粉末。2.1.2 黄芩苷纳米药物的表征
(1)紫外吸收法验证黄芩苷的成功负载 通过紫外-可见分光光度计在200~800 nm范围内检测BAI@cLANCs溶液中BAI的紫外吸收,并与cLANCs和BAI标准溶液进行对比,结果如图1-B所示:cLANCs在200~800 nm的波长范围内未见吸收,而BAI和BAI@cLANCs在250~350 nm范围内吸收峰趋势相同且在276、317 nm两处均有吸收峰,由此证明黄芩苷已成功负载。
( 2)粒径测量 取透析之后得到的cLANCs溶液和BAI@cLANCs溶液通过纳米激光粒度分布仪测量。cLANCs的粒径为72 nm,PDI为0.286;BAI@cLANCs的粒径为74 nm,PDI为0.297(图2-A,B)。负载BAI前后纳米粒子大小无明显变化,且分散性良好。
(3)稀释稳定性评估 取BAI@cLANCs溶液对半稀释,一直稀释到硫辛酸纳米粒子的临界聚集浓度(0.02 mg/mL)以下,即第1次取RO水1.0 mL, 9.1 mg/mL BAI@cLANCs溶液1.0 mL,依次对半稀释。分别检测9.1、4.55、2.28、1.14、0.57、0.28、0.14、0.07、0.04、0.02、0.01 mg/mL下的粒径。结果显示,BAI@cLANCs的粒径无较大波动(图2-C),表明BAI@cLANCs具有良好的稀释稳定性。
(4)血清稳定性评估 取胎牛血清(FBS)300 μL加至BAI@cLANCs溶液
2700 μL中,用移液枪混匀,置37℃水浴锅中孵育,测定0、3、6、9、12 h的粒径。结果显示,BAI@cLANCs与血清孵育12 h内粒径无明显变化(图2-D),表明BAI@cLANCs具有良好的血清稳定性。2.2 细胞培养及分组
于5% CO2、37℃的培养箱中,利用RPMI 1640完全培养基(89%基础培养基 + 10%胎牛血清 + 1%双抗)对HUVECs进行培育。当细胞汇合度达70%~80%时,用含EDTA的胰酶将细胞消化分散,以1∶3的比例进行传代。以未经任何处理的细胞作为对照组,经H2O2诱导的衰老细胞为模型组,其余各组H2O2 H2O2诱导后分别加入BAI、cLANCs、BAI + cLANCs、BAI@cLANCs。其中,BAI组、cLANCs组、BAI + cLANCs组的给药量与BAI@cLANCs组中黄芩苷和空白载体的含量一致。
2.3 MTT法检测细胞活性
利用RPMI 1640完全培养基配制单细胞悬液,以每孔1×103~1×104个细胞的密度接种到96孔板中,每孔体积100 μL。于37 ℃培养箱中孵育24 h后,进行给药处理,再孵育24 h后,每孔加入MTT溶液(5 mg/mL)20 μL,继续孵育4 h,小心吸弃孔内培养上清液,每孔加DMSO 150 μL,在脱色摇床上振荡10 min。以空白对照组调零,用酶联免疫检测仪于490 nm处测定各孔吸收度(A)。以未做任何处理的细胞作为空白对照组,其细胞活力为100%。按照下列公式计算细胞增殖活性:细胞存活率(%) = (Atest−Ablank)/(Acontrol−Ablank) × 100。
设置BAI@cLANCs(以BAI的浓度进行定量)的浓度为0、2.8、5.6、11、22、34、45、67、90、112 mmol/L,计算各浓度的细胞存活率。结果如图3-A所示,BAI@cLANCs在上述浓度范围内,对HUVECs的生长无显著影响,表明BAI@cLANCs在该浓度范围内具有较高的安全性。
设置H2O2浓度为0、150、200、300、500、600、700、800、900、
1000 μmol/L,通过MTT法计算各浓度的细胞存活率,结果如图3-B,H2O2呈现剂量依赖的细胞毒性,考虑到在不产生明显细胞毒性的情况下进行细胞衰老诱导,初步确定以200 μmol/L的H2O2诱导HUVECs衰老。2.4 构建HUVECs衰老模型
用含EDTA的胰酶将培养瓶中的HUVECs细胞消化分散下来,离心(
1000 r/min,5min),弃上清液,加入含有H2O2(200 μmol/L)的PBS溶液重悬细胞,在含5% CO2、37℃的培养箱中孵育10、15、20、25、30、45 min。在H2O2处理期间,每5 分钟轻轻上下翻转EP管1次,H2O2处理完成后,离心弃上清液,加PBS 1 mL清洗,再次离心。最后,取完全培养基1 mL将细胞团块混匀制成细胞悬液,再接种到培养板里。此方法参考文献[17],结合本研究的实验探究,初步确定H2O2处理25 min后的效果较佳。用200 μmol/L H2O2处理25 min建立衰老细胞,以正常细胞作为对照,各设置3个平行样,分别接种于12孔细胞培养板中(每孔1 × 104 个细胞),共培养3 d 后,采用Hoechst
33342 染色法、SA-β-gal 染色法进行染色。染色完成后分别于倒置荧光显微镜、普通光学显微镜下进行成像,以检测细胞衰老情况。SA-β-gal染色后的细胞,每孔取7个随机视野500个细胞计数,SA-β-gal阳性细胞占细胞总数的百分比,即为细胞衰老比例。由图4可见,经200 μmol/L的H2O2诱导25 min后的细胞核形态变得不完整,呈现出变大、变平、对半裂开等现象,且SA-β-gal法染色后,蓝绿色细胞数量明显增加,细胞衰老比例也明显升高(P<0.01)。上述结果说明HUVECs衰老模型成功建立。Figure 4. Assessment of HUVECs cellular senescence induced by H2O2A:Nucleus staining photographs of untreated HUVECs with Hoechst 33342(Scar bar: 25 μm);B:Nucleus staining photographs of H2O2 treated HUVECs with Hoechst 33342. Red arrows are the nuclei which are significantly enlarged and split in half(Scar bar:25 μm);C: SA-β-gal staining photographs of untreated HUVECs (×100);D: SA-β-gal staining photographs of H2O2 treated HUVECs (×100);E:Cell senescence ratios of untreated HUVECs and H2O2 treated HUVECs after SA-β-gal staining ($ \bar{x}\pm s $, n = 7,**P<0.01)2.5 体外评估BAI@cLANCs的细胞摄取情况
采用尼罗红(Nile Red, NR)荧光染料标记BAI@cLANCs。在BAI@cLANCs水溶液中加入含NR的DMSO溶液,超声后避光透析2 h,即得。采用“2.4”项下方法构建衰老细胞模型,将细胞接种至12孔板中(每孔1 × 105 个细胞)。孵育24 h后,用NR标记的BAI@cLANCs[c(NR) = 200 ng/mL,c(BAI) = 22 mmol/L,c(cLANCs) = 170 mmol/L]的新鲜培养基替换旧培养基,并分别孵育1、3、6 h后用Hoechst 33342进行细胞核染色,最后于倒置荧光显微镜下进行定性荧光成像。采用上述孵育方法,实验同时设对照组、模型组、NR组(干预时间为6 h),经过相同处理之后用流式细胞仪进行摄取定量分析。
荧光成像结果表明,在相同干预条件下,随着时间的增加,BAI@cLANCs组红色荧光增亮且数目增多,处理6 h组细胞摄取效果最好。结果见图5。根据流式分析数据,未作任何干预的空白组和模型组,细胞摄取量无明显差异; NR组与BAI@cLANCs 6 h组相比,摄取量较低(P<0.05);随着时间的延长,衰老细胞对BAI@cLANCs的摄取量逐渐增加,流式结果与荧光定性结果相符合。细胞摄取结果说明,以cLANCs作为药物递送载体,BAI可被HUVECs有效摄取。
Figure 5. Qualitative and quantitative of cell uptake of BAI@cLANCs evaluated in vitro ($ \bar{x} \pm s$, n = 3)A:Fluorescence images of model cells treated with Nile Red(NR) &BAI@cLANCs for 1,3,and 6 h(Scar bar:25 μm);B:Mean fluorescence intensity of H2O2 induced HUVECs incubated with NR&BAI@cLANCs for 1, 3, and 6 h(****P<0.0001 );C:Differences in fluorescence intensity, the untreated treated HUVECs are used as control, and H2O2 induced HUVECs are used as model(M)2.6 SA-β-gal 染色法观察细胞衰老比例
以“2.4”项下方法构建细胞衰老模型,接种于12孔板中(每孔1 × 104 个细胞),孵育24 h。按照实验分组将衰老模型细胞分为5组:模型组、BAI@cLANCs组、BAI+cLANCs组、BAI组、cLANCs组。4个给药组的药物浓度均用RPMI
1640 基础培养基进行稀释,BAI组c(BAI)为4.50、11、22 mmol/L,cLANCs组c(cLANCs)为34、85、170 mmol/L,BAI@cLANCs、BAI+cLANCs药物浓度均以BAI组和cLANCs组进行定量,同时将模型组的完全培养基替换为基础培养基,共同孵育1 d,使用SA-β-gal染色,测定细胞衰老比例。结果如图6所示,各给药组随着药物浓度的增加,与之相对应的衰老阳性细胞数逐渐减少,且与衰老模型组相比,4个给药组的衰老细胞阳性率均降低,尤其是BAI@cLANCs 22 mmol/L组更显著,说明BAI@cLANCs[c(BAI)= 22 mmol/L]抵抗过氧化氢诱导的血管内皮细胞衰老效果最佳。
2.7 DCFH-DA染色法检测细胞ROS水平
按“2.4”项下方法构建HUVECs细胞衰老模型,将细胞接种至12孔板中(每孔1 × 105 个细胞),孵育24 h。按照上述实验分组进行药物处理6 h 后,用DCFH-DA荧光探针避光孵育30 min,再使用Hoechst
33342 进行细胞核染色,于倒置荧光显微镜下成像定性分析,其中药物浓度设置如下:BAI组c(BAI)=22 mmol/L,cLANCs组c(cLANCs)=170 mmol/L,BAI@cLANCs、BAI+cLANCs药物浓度均以BAI组和cLANCs组一致。为了定量ROS产生情况,建立衰老模型,以每孔1×104个细胞接种到96孔板,未处理的细胞作正常对照组,共同培养24 h,按上述实验分组进行药物处理,6 h后用DCFH-DA荧光探针避光孵育30 min,PBS清洗2~3遍后,使用多功能酶标仪进行ROS含量检测(激发波长488 nm,吸收波长525 nm)。由图7-A可见,DCFH-DA荧光探针被ROS氧化后于荧光显微镜下呈绿色荧光,与对照组相比,模型组的绿色荧光更为明显;与模型组相比,4个给药组的绿色荧光均减弱,荧光强度由大到小依次为: BAI组、BAI + cLANCs组、cLANCs组、BAI@cLANCs组。通过多功能酶标仪测得各组细胞内荧光探针的吸收度,以吸收度折算ROS含量。如图7-B所示,与对照组相比,模型组的ROS含量显著增加(P<
0.0001 ),差异具有统计学意义,与模型组相比,BAI@cLANCs 组ROS含量减少(P<0.01),差异具有统计学意义,且其余3个给药组的ROS含量均有降低。整体来说,多功能酶标仪检测的ROS含量与荧光成像结果相一致。cLANCs作为药物递送载体,促进BAI在胞内富集,联合清除胞内ROS含量,达到抵抗细胞衰老的目的。2.8 MDA含量检测
采用“2.4”项下方法构建细胞衰老模型,于培养瓶中培养24 h。按上述实验分组进行药物处理24 h,药物浓度设置同“2.7”项。按照试剂盒说明书,进行MDA含量检测。
如图7-C所示,经H2O2诱导的衰老细胞,与对照组比较,MDA含量显著增加;与模型组相比,药物处理组MDA含量均减少,其中BAI@cLANCs组下降较为明显。该结果表明,经H2O2诱导后细胞脂质过氧化水平显著升高(P<0.05),而BAI@cLANCs相比于其他治疗组降低细胞脂质过氧化水平较为明显。
2.9 PI单染法检测细胞周期
按照“2.4”项下方法构建细胞衰老模型,将细胞接种至12孔板中(每孔1 × 105 个细胞),孵育24 h。按上述实验分组进行药物处理(药物浓度设置同“2.7”项)24 h后,0.25%胰酶消化,用预冷的PBS洗2次,加入预冷的70%乙醇5 mL固定过夜,PBS洗2次后,加入PI 0.5 mL避光反应30 min后进行流式检测。统计分析G0/G1期、S期、G2/M期细胞占细胞总数的百分比。
结果显示:与对照组相比,模型组的G0/G1期细胞比例显著降低(P<
0.0001 ),G2/M期细胞比例降低,S期细胞比例显著增高(P<0.0001 ),表明H2O2诱导HUVECs发生了明显损伤;与模型组相比, BAI@cLANCs组的G0/G1期细胞比例增高,G2/M期细胞比例显著增高(P<0.05),S期细胞比例显著降低(P<0.0001 ),并且相应周期的细胞占比与对照组接近,表明其具有很好的抗氧化效果;相比之下,其余治疗组与模型组相比,G0/G1期细胞比例增高,S期细胞和G2/M期细胞比例降低,呈现出较为一致的作用趋势,也表现出了一定程度的抗氧化作用,结果详见表1。Table 1. Cell cycle distribution of model cells induced by BAI@cLANCs, BAI + cLANCs, BAI, and cLANCs for 24 h.Statistical methods: one-way analysis of variance($ \bar{x} \pm s$, n = 3)Group Percentage of cells in each phase of the cell cycle G0/G1 phase S phase G2/M phase Control 62.75 ± 1.11 16.98 ± 1.25 13.59 ± 0.74 Model 39.41 ± 0.95**** 51.61 ± 0.85**** 7.43 ± 2.02 BAI@cLANCs 46.08 ± 3.99 27.80 ± 2.90#### 18.04 ± 1.27# BAI+cLANCs 56.62 ± 10.58### 28.34 ± 4.21#### 13.10 ± 6.02 BAI 55.04 ± 2.16### 37.60 ± 2.26## 6.04 ± 1.14 cLANCs 48.08 ± 3.41 39.75 ± 2.14# 9.75 ± 0.94 ****P< 0.0001 vs control group; #P<0.05, ##P<0.01, ###P<0.001, ####P<0.0001 vs model group3. 结论与讨论
本研究通过体外实验,多角度评估BAI@cLANCs对H2O2诱导的HUVECs衰老的影响,评估其应用潜力。细胞毒性实验数据显示,BAI@cLANCs对正常HUVECs的生长无显著的抑制作用。BAI@cLANCs的细胞摄取定性及定量结果表明,cLANCs可提高药物递送效率,促进BAI@cLANCs在衰老血管内皮细胞内的富集,入胞后,通过黄芩苷和cLANCs的降解产物二氢硫辛酸的联合抗氧化作用清除衰老HUVECs中的ROS。为了评估BAI@cLANCs的抗衰老效果,本研究采用了SA-β-gal染色法、ROS荧光成像和多功能酶标仪定量法、脂质氧化检测、细胞周期和细胞凋亡检测发现,经H2O2诱导后细胞衰老比例、ROS、MDA含量升高,药物处理后细胞衰老比例、细胞内ROS、MDA的含量均有所下降;即H2O2处理后的细胞内产生了大量ROS,且细胞脂质过氧化水平升高,而BAI@cLANCs相比于其他治疗组能更有效地清除细胞内ROS、降低细胞脂质过氧化水平。细胞周期分析结果显示,经H2O2诱导后细胞多阻滞于S期,增殖速度降低。BAI@cLANCs的干预对衰老细胞具有一定的修复功能,细胞完成了DNA的合成,进入到G2/M期,其分裂增殖速度较模型组快。相比之下,BAI + cLANCs组、BAI组、cLANCs组细胞增殖速度较BAI@cLANCs组慢。实验结果证明,BAI@cLANCs具有更优的抗氧化功效,能有效延缓血管内皮细胞衰老,为黄芩苷纳米制剂进行抗衰老相关研究提供了很好的剂型参考。
-
[1] Burucoa C, Axon A. Epidemiology of Helicobacter pylori infection[J]. Helicobacter, 2017, 22(Suppl 1). doi: 10.1111/hel.12403.
[2] Carter EL, Boer JL, Farrugia MA, et al. Function of UreB in Klebsiella aerogenes urease[J]. Biochemistry, 2011, 50(43): 9296-9308. doi: 10.1021/bi2011064
[3] Aziz F, Khan I, Shukla S, et al. Partners in crime: the Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer[J]. Pharmacol Ther, 2022, 232: 107994. doi: 10.1016/j.pharmthera.2021.107994
[4] Cover TL, Lacy DB, Ohi MD. The Helicobacter pylori cag type IV secretion system[J]. Trends Microbiol, 2020, 28(8): 682-695. doi: 10.1016/j.tim.2020.02.004
[5] Singh N, Baby D, Rajguru J, et al. Inflammation and cancer[J]. Ann Afr Med, 2019, 18(3): 121. doi: 10.4103/aam.aam_56_18
[6] Ansari S, Yamaoka Y. Helicobacter pylori BabA in adaptation for gastric colonization[J]. World J Gastroenterol, 2017, 23(23): 4158-4169. doi: 10.3748/wjg.v23.i23.4158
[7] Merino E, Flores-Encarnación M, Aguilar-Gutiérrez GR. Functional interaction and structural characteristics of unique components of Helicobacter pylori T4SS[J]. FEBS J, 2017, 284(21): 3540-3549. doi: 10.1111/febs.14092
[8] Tan SM, Tompkins LS, Amieva MR. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche[J]. PLoS Pathog, 2009, 5(5): e1000407. doi: 10.1371/journal.ppat.1000407
[9] Backert S, Bernegger S, Skórko-Glonek J, et al. Extracellular HtrA serine proteases: an emerging new strategy in bacterial pathogenesis[J]. Cell Microbiol, 2018, 20(6): e12845. doi: 10.1111/cmi.12845
[10] Wu LL, Li X, Li ZT, et al. HtrA serine proteases in cancers: a target of interest for cancer therapy[J]. Biomedecine Pharmacother, 2021, 139: 111603. doi: 10.1016/j.biopha.2021.111603
[11] Xue RY, Liu C, Xiao QT, et al. HtrA family proteases of bacterial pathogens: pros and cons for their therapeutic use[J]. Clin Microbiol Infect, 2021, 27(4): 559-564. doi: 10.1016/j.cmi.2020.12.017
[12] Kim KA, Kim D, Kim JH, et al. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd. 3 brain endothelial cells and rat ischemic stroke models[J]. Fluids Barriers CNS, 2020, 17(1): 21. doi: 10.1186/s12987-020-00182-8
[13] Kuo WT, Odenwald MA, Turner JR, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival[J]. Ann N Y Acad Sci, 2022, 1514(1): 21-33. doi: 10.1111/nyas.14798
[14] Kuo WT, Shen L, Zuo L, et al. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression[J]. Gastroenterology, 2019, 157(5): 1323-1337. doi: 10.1053/j.gastro.2019.07.058
[15] Torices S, Daire L, Simon S, et al. Occludin: a gatekeeper of brain Infection by HIV-1[J]. Fluids Barriers CNS, 2023, 20(1): 73. doi: 10.1186/s12987-023-00476-7
[16] Vaswani CM, Varkouhi AK, Gupta S, et al. Preventing occludin tight-junction disruption via inhibition of microRNA-193b-5p attenuates viral load and influenza-induced lung injury[J]. Mol Ther, 2023, 31(9): 2681-2701. doi: 10.1016/j.ymthe.2023.06.011
[17] Hou JB, Yan D, Liu YD, et al. The roles of integrin α5β1 in human cancer[J]. Onco Targets Ther, 2020, 13: 13329-13344. doi: 10.2147/OTT.S273803
[18] Zhou XM, Zhu HZ, Luo C, et al. Targeting integrin α5β1 in urological tumors: opportunities and challenges[J]. Front Oncol, 2023, 13: 1165073. doi: 10.3389/fonc.2023.1165073
[19] Xiong X, Li BW, Zhou ZX, et al. The VirB system plays a crucial role in Brucella intracellular infection[J]. Int J Mol Sci, 2021, 22(24): 13637. doi: 10.3390/ijms222413637
[20] Li YG, Christie PJ. The Agrobacterium VirB/VirD4 T4SS: mechanism and architecture defined through in vivo mutagenesis and chimeric systems[J]. Curr Top Microbiol Immunol, 2018, 418: 233-260.
[21] Choi YH, Lai J, Kim MA, et al. CagL polymorphisms between East Asian and Western Helicobacter pylori are associated with different abilities to induce IL-8 secretion[J]. J Microbiol, 2021, 59(8): 763-770. doi: 10.1007/s12275-021-1136-2
[22] Skoog EC, Morikis VA, Martin ME, et al. CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding[J]. mBio, 2018, 9(3): e00717-e00718.
[23] Thomas MP, Erneux C, Potter BVL. SHIP2: structure, function and inhibition[J]. Chembiochem, 2017, 18(3): 233-247. doi: 10.1002/cbic.201600541
[24] Fujii Y, Murata-Kamiya N, Hatakeyama M. Helicobacter pylori CagA oncoprotein interacts with SHIP2 to increase its delivery into gastric epithelial cells[J]. Cancer Sci, 2020, 111(5): 1596-1606. doi: 10.1111/cas.14391
[25] Amorim S, Soares da Costa D, Pashkuleva I, et al. Hyaluronic acid of low molecular weight triggers the invasive “hummingbird” phenotype on gastric cancer cells[J]. Adv Biosyst, 2020, 4(11): e2000122. doi: 10.1002/adbi.202000122
[26] Gundamaraju R, Lu WY, Paul MK, et al. Autophagy and EMT in cancer and metastasis: who controls whom[J]? Biochim Biophys Acta Mol Basis Dis, 2022, 1868(9): 166431. doi: 10.1016/j.bbadis.2022.166431
[27] Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors[J]. Trends Cancer, 2020, 6(11): 942-950. doi: 10.1016/j.trecan.2020.06.005
[28] Chen HX, Zhou L, Wu XR, et al. The PI3K/AKT pathway in the pathogenesis of prostate cancer[J]. Front Biosci (Landmark Ed), 2016, 21(5): 1084-1091. doi: 10.2741/4443
[29] Peng Y, Wang YY, Zhou C, et al. PI3K/akt/mTOR pathway and its role in cancer therapeutics: are we making headway[J]? Front Oncol, 2022, 12: 819128. doi: 10.3389/fonc.2022.819128
[30] Liu JQ, Xiao Q, Xiao JN, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3. doi: 10.1038/s41392-021-00762-6
[31] Yu FY, Yu CH, Li FF, et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther, 2021, 6(1): 307. doi: 10.1038/s41392-021-00701-5
[32] Jiang FY, Bian GX, Li JH. ASPP2 promotes cell apoptosis in cervical cancer through inhibiting autophagy[J]. Exp Ther Med, 2022, 24(6): 726. doi: 10.3892/etm.2022.11662
[33] Liang BB, Jiang Y, Song SH, et al. ASPP2 suppresses tumour growth and stemness characteristics in HCC by inhibiting Warburg effect via WNT/β-catenin/HK2 axis[J]. J Cell Mol Med, 2023, 27(5): 659-671. doi: 10.1111/jcmm.17687
[34] Hároníková L, Vojtěšek B. HDM2 and HDMX proteins in human cancer[J]. Klin Onkol, 2018, 31(Suppl 2): 63-70.
[35] Quotti Tubi L, Mandato E, Canovas Nunes S, et al. CK2β-regulated signaling controls B cell differentiation and function[J]. Front Immunol, 2022, 13: 959138.
[36] Chen LB, Jin XT, Ma J, et al. YAP at the progression of inflammation[J]. Front Cell Dev Biol, 2023, 11: 1204033. doi: 10.3389/fcell.2023.1204033
[37] Wu ZM, Guan KL. Hippo signaling in embryogenesis and development[J]. Trends Biochem Sci, 2021, 46(1): 51-63. doi: 10.1016/j.tibs.2020.08.008
[38] Stair MI, Winn CB, Burns MA, et al. Effects of chronic Helicobacter pylori strain PMSS1 infection on whole brain and gastric iron homeostasis in male INS-GAS mice[J]. Microbes Infect, 2023, 25(3): 105045. doi: 10.1016/j.micinf.2022.105045
[39] Cheng TY, Wu MS, Hua KT, et al. Cyr61/CTGF/Nov family proteins in gastric carcinogenesis[J]. World J Gastroenterol, 2014, 20(7): 1694-1700. doi: 10.3748/wjg.v20.i7.1694
[40] Boissier P, Huynh-Do U. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling[J]. Cell Signal, 2014, 26(3): 483-491
[41] Zoli M. Twist-stretch relations in nucleic acids[J]. Eur Biophys J, 2023, 52(8): 641-650. doi: 10.1007/s00249-023-01669-6
[42] Corso G, Figueiredo J, de Angelis SP, et al. E-cadherin deregulation in breast cancer[J]. J Cell Mol Med, 2020, 24(11): 5930-5936. doi: 10.1111/jcmm.15140
[43] Takahashi-Kanemitsu A, Lu MX, Knight CT, et al. The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells[J]. Sci Signal, 2023, 16(794): eabp9020. doi: 10.1126/scisignal.abp9020
[44] VanderVorst K, Dreyer CA, Konopelski SE, et al. Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis[J]. Cancer Res, 2019, 79(8): 1719-1729. doi: 10.1158/0008-5472.CAN-18-2757
[45] Asmamaw MD, Shi XJ, Zhang LR, et al. A comprehensive review of SHP2 and its role in cancer[J]. Cell Oncol (Dordr), 2022, 45(5): 729-753.
[46] Imai S, Ooki T, Murata-Kamiya N, et al. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis[J]. Cell Host Microbe, 2021, 29(6): 941-958. e10.
[47] Yamahashi Y, Hatakeyama M. PAR1b takes the stage in the morphogenetic and motogenetic activity of Helicobacter pylori CagA oncoprotein[J]. Cell Adh Migr, 2013, 7(1): 11-18. doi: 10.4161/cam.21936
[48] Bildik G, Acılan C, Sahin GN, et al. C-Abl is not actıvated in DNA damage-induced and Tap63-mediated oocyte apoptosıs in human ovary[J]. Cell Death Dis, 2018, 9(10): 943. doi: 10.1038/s41419-018-1026-7
[49] González-Martín A, Moyano T, Gutiérrez DA, et al. C-Abl regulates a synaptic plasticity-related transcriptional program involved in memory and learning[J]. Prog Neurobiol, 2021, 205: 102122. doi: 10.1016/j.pneurobio.2021.102122
[50] Keshet R, Adler J, Ricardo Lax I, et al. C-Abl antagonizes the YAP oncogenic function[J]. Cell Death Differ, 2015, 22(6): 935-945. doi: 10.1038/cdd.2014.182
[51] Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer[J]. Cancer Sci, 2020, 111(5): 1443-1451. doi: 10.1111/cas.14404
[52] Sharma R, Malviya R. Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188869. doi: 10.1016/j.bbcan.2023.188869
[53] Zambelli A, Biamonti G, Amato A. HGF/c-met signalling in the tumor microenvironment[J]. Adv Exp Med Biol, 2021, 1270: 31-44.
[54] Zhao Y, Ye WL, Wang YD, et al. HGF/c-met: a key promoter in liver regeneration[J]. Front Pharmacol, 2022, 13: 808855. doi: 10.3389/fphar.2022.808855
[55] Galbán S, Duckett CS. XIAP as a ubiquitin ligase in cellular signaling[J]. Cell Death Differ, 2010, 17(1): 54-60. doi: 10.1038/cdd.2009.81
[56] Liao Y, Zhao JJ, Bulek K, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis[J]. Nat Commun, 2020, 11(1): 900. doi: 10.1038/s41467-020-14698-y
[57] Liu JY, Zhang DY, Luo WJ, et al. E3 ligase activity of XIAP RING domain is required for XIAP-mediated cancer cell migration, but not for its RhoGDI binding activity[J]. PLoS One, 2012, 7(4): e35682. doi: 10.1371/journal.pone.0035682
[58] Palrasu M, Zaika E, El-Rifai W, et al. Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells[J]. J Clin Invest, 2020, 130(5): 2422-2434. doi: 10.1172/JCI130015
[59] Palrasu M, Zaika E, Paulrasu K, et al. Helicobacter pylori pathogen inhibits cellular responses to oncogenic stress and apoptosis[J]. PLoS Pathog, 2022, 18(6): e1010628.
[60] Liu ZX, Wu X, Tian YY, et al. H. pylori infection induces CXCL8 expression and promotes gastric cancer progress through downregulating KLF4[J]. Mol Carcinog, 2021, 60(8): 524-537. doi: 10.1002/mc.23309
[61] Ou Y, Ren HF, Zhao RR, et al. Helicobacter pylori CagA promotes the malignant transformation of gastric mucosal epithelial cells through the dysregulation of the miR-155/KLF4 signaling pathway[J]. Mol Carcinog, 2019, 58(8): 1427-1437.
[62] Zhao RR, Liu ZX, Xu WT, et al. Helicobacter pylori infection leads to KLF4 inactivation in gastric cancer through a TET1-mediated DNA methylation mechanism[J]. Cancer Med, 2020, 9(7): 2551-2563.
[63] Karakus C. Development of a lateral flow immunoassay strip for rapid detection of CagA antigen of Helicobacter pylori[J]. J Immunoassay Immunochem, 2015, 36(3): 324-333. doi: 10.1080/15321819.2014.952440
[64] Xu SH, Wu XQ, Zhang XY, et al. CagA orchestrates eEF1A1 and PKCδ to induce interleukin-6 expression in Helicobacter pylori-infected gastric epithelial cells[J]. Gut Pathog, 2020, 12: 31. doi: 10.1186/s13099-020-00368-3
[65] Azadegan-Dehkordi F, Bagheri N, Shirzad M, et al. Correlation between mucosal IL-6 mRNA expression level and virulence factors of Helicobacter pylori in Iranian adult patients with chronic gastritis[J]. Jundishapur J Microbiol, 2015, 8(8): e21701.
[66] Figura N, Di Cairano G, Moretti E, et al. Helicobacter pylori infection and autoimmune thyroid diseases: the role of virulent strains[J]. Antibiotics, 2019, 9(1): 12.
[67] Lee KS, Kalantzis A, Jackson CB, et al. Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3γ via gastric STAT3 activation[J]. PLoS One, 2012, 7(2): e30786.
[68] Hayashi Y, Tsujii M, Wang J, et al. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis[J]. Gut, 2013, 62(11): 1536-1546. doi: 10.1136/gutjnl-2011-301625
[69] Yang FH, Xu YG, Liu C, et al. NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression[J]. Cell Death Dis, 2018, 9(1): 12. doi: 10.1038/s41419-017-0020-9
[70] Wu J, Ji XW, Zhu LL, et al. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells[J]. Cancer Lett, 2013, 329(2): 155-163. doi: 10.1016/j.canlet.2012.10.038
计量
- 文章访问数: 21
- HTML全文浏览量: 1
- PDF下载量: 8