• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

幽门螺杆菌CagA诱导胃部炎癌转化的研究进展

顾晓, 邢莹莹

顾晓,邢莹莹. 幽门螺杆菌CagA诱导胃部炎癌转化的研究进展[J]. 中国药科大学学报,2025,56(1):132 − 138. DOI: 10.11665/j.issn.1000-5048.2024022302
引用本文: 顾晓,邢莹莹. 幽门螺杆菌CagA诱导胃部炎癌转化的研究进展[J]. 中国药科大学学报,2025,56(1):132 − 138. DOI: 10.11665/j.issn.1000-5048.2024022302
GU Xiao, XING Yingying. Research progress on Helicobacter pylori CagA-induced gastric inflammation-cancer transformation[J]. J China Pharm Univ, 2025, 56(1): 132 − 138. DOI: 10.11665/j.issn.1000-5048.2024022302
Citation: GU Xiao, XING Yingying. Research progress on Helicobacter pylori CagA-induced gastric inflammation-cancer transformation[J]. J China Pharm Univ, 2025, 56(1): 132 − 138. DOI: 10.11665/j.issn.1000-5048.2024022302

幽门螺杆菌CagA诱导胃部炎癌转化的研究进展

基金项目: 国家自然科学基金项目(No.81971562);2024年海南省卫生健康科技创新联合项目(WSJK2024MS230)
详细信息
    通讯作者:

    邢莹莹: Tel:13776417915 E-mail:xingying1980@126.com

  • 中图分类号: R573;Q936

Research progress on Helicobacter pylori CagA-induced gastric inflammation-cancer transformation

Funds: This study was supported by the National Natural Science Foundation of China (No. 81971562), and 2024 Hainan Health Science and Technology Innovation Joint Project(WSJK2024MS230)
  • 摘要:

    幽门螺杆菌(Helicobacter pylori, Hp)目前已被列为能导致胃癌发生的Ⅰ类致病菌,近年来,对于幽门螺杆菌感染如何引起胃癌的发生和发展的研究备受瞩目。细胞毒力相关基因A(CagA)作为Hp的首要毒力因子,目前已经有大量研究报道其可以作为Hp产生胃部感染、定植以及促使宿主细胞发生炎癌转化等的关键外分泌毒素发挥功能,感染CagA阳性菌株的患者相比于CagA阴性菌株感染患者具有更高患肿瘤的概率。本文基于前期研究,从毒力蛋白CagA的递送方式、生物活性、免疫调控以及相关分子机制层面对Hp感染所诱导胃癌的发生以及发展过程进行阐述。

    Abstract:

    Helicobacter pylori (Hp) is currently classified as a class I carcinogen that can cause gastric cancer, research in recent years on how Hp infection causes the occurrence and progression of gastric cancer has attracted much attention. As the primary virulence factor of Hp, cytotoxicity-associated gene A (CagA) has been extensively studied and reported to function as a key excreted toxin for Hp to induce gastric infection, colonization and promote inflammatory-carcinogenic transformation of host cells. Patients infected with CagA-positive strains have a higher risk of developing tumors compared to those infected with CagA-negative strains. Based on previous studies, this article further elaborates on the import process, biological activity, and related molecular mechanisms of virulence protein CagA in the occurrence and development of gastric cancer induced by Hp infection.

  • 胃癌在我国是常见的癌症类型,目前在全球癌症患者中患胃癌的患者数量排名为第5位,并不断上升,且已成为三大常见癌症死亡原因之一。该病的主要危险因素是幽门螺杆菌(Helicobacter pylori,HP)感染,在我国超过50%的人胃部感染Hp[1]。该菌属于革兰氏阴性菌,生长条件为微需氧,主要分布于胃窦及十二指肠的各区域内,能通过分泌尿素酶[2]在高酸性条件下生存。它可以使胃黏膜产生轻微的慢性炎症,而一旦长期定植会导致胃及十二指肠溃疡与胃癌的发生。该菌由巴里·马歇尔(Barry Marshall)和罗宾·沃伦(Robin Warren)二人发现,是一种单极、多鞭毛、末端钝圆、螺旋形弯曲的细菌,首次发现于1983年,分离自一名慢性活动性胃炎患者的胃黏膜组织,是目前已被报道的能够在人胃中长期定植的主要微生物种类之一。幽门螺杆菌能分泌多种内分泌及外分泌毒素如LPS、UreB、BabA、HopQ、VacA以及CagA等[2],其中,CagA与胃上皮细胞的转化以及致癌信号通路关系密切,被认为是Hp诱导胃部炎癌转化的关键毒力因子。CagA基因编码的CagA蛋白位于Cag致病性岛(cag PAI),这是一个长度约为40 kb的特殊DNA片段,东亚地区分离的幽门螺杆菌菌株几乎都含有cag PAI,而西亚地区所分离的菌株则有约40%是CagA阴性。Cag PAI包含大约30个基因,它们组成了Ⅳ型分泌系统[34](T4SS),这是一种细菌微注射器,可以将CagA送入附着的胃上皮细胞,一旦被输送到宿主细胞内,CagA就被束缚在内质膜上,作为蛋白质支架,与多种宿主蛋白发生相互作用,干扰其正常的生理功能,从而诱导CagA递送的胃上皮细胞发生炎癌转化[5]。CagA包括一个结构化的N端区域,以及一个本质上无序的C端区域,通过两个独特的基序(EPIYA)基序和(CM)基序发挥功能。1个CagA蛋白包含多个EPIYA基序,围绕EPIYA基序的序列多样性总共分为4个不同的EPIYA片段(EPIYA-A、EPIYA-B、EPIYA-C和EPIYA-D)。根据EPIYA片段的差异性进行比对,CagA被分为西方ABC型和东亚ABD型。同时,根据EPIYA-C片段的串联重复的特征,西部CagA可进一步细分为ABC、ABCC和ABCCC三种类型。

    Hp与人胃上皮细胞表面黏附需要借助BabA和HopQ等黏附素,其中HopQ黏附蛋白与人癌胚抗原相关细胞黏附分子(CEACMAs)的氨基末端免疫球蛋白样结构域能以高亲和力相互作用[6],这种强相互作用对于Hp介导的CagA递送是不可或缺的。因为这有利于保证Hp稳定黏附在胃上皮表面,增强CagA-T4SS依赖性表型[7]。在极化的上皮细胞黏附后,Hp能够在不支持细菌自由游动的生长条件下直接在上皮细胞表面生长[8]。接着Hp通过分泌丝氨酸蛋白酶HtrA切割Occludin(闭合蛋白)、claudin-8(紧密连接蛋白)和E-cadherin(E-钙黏蛋白)等上皮连接蛋白打开细胞间隙[911],使Hp从胃上皮表面进入基底膜外侧[1216],为CagA蛋白的输入提供了先决条件。Hp到达基底膜外侧后形成T4SS菌毛,直接与宿主细胞整合素α5β1结合[1718],而后T4SS菌毛进入宿主细胞内部并注射cag PAI所编码的CagA蛋白。Ⅳ型分泌系统(T4SS)是革兰氏阴性菌和革兰氏阳性菌以及一些古细菌中存在的大型膜相关转运蛋白复合体,T4SS通常由11个VirB蛋白和对应的偶联蛋白组成[19]。Hp T4SS菌毛注射系统也是由cag PAI所编码,包含多达32个表达所有VirB同源基因和VirD4的基因以及一些辅助因子[20]。T4SS可以根据其功能分为接合系统、效应蛋白转运系统和DNA释放及摄取系统。这种T4SS菌毛系统与慢性胃炎、消化性溃疡以及胃癌等多种疾病存在关联。根据前期大量实验表明,病原体中的大多数T4SS不会将其所分泌的效应物转移到细胞培养基上清液中,这表明T4SS的功能需要通过宿主细胞的信号才能激活,例如与特定受体发生相互作用。宿主细胞整合素α5β1先前已被证明可以直接与Hp T4SS蛋白发生相互作用[21]。T4SS蛋白中的CagL和CagY二者能与整合素结合并诱导局部膜皱褶和整合素聚集,表明其对膜动力学的普遍影响,这是T4SS对宿主细胞产生的第一个作用[22]。一旦T4SS系统建立,Hp便可将CagA效应蛋白输入到宿主细胞内部。据目前的研究报道,CagA激活的SHIP2修饰质膜的PI成分通过加强幽门螺杆菌与宿主细胞基底膜外侧的附着[23],进而促进T4SS介导的CagA递送。由于大量的SHIP2与CagA发生相互作用,SHIP2成为了通过EPIYA-C段传递的CagA的主要相互作用蛋白,这表明CagA-SHIP2相互作用在为T4SS传输CagA提供动力方面发挥了至关重要的作用[24]

    目前已通过研究证实Hp感染宿主细胞会引起蜂鸟表型的特征,该特征的发生与CagA的联系异常紧密[25]。经报道,CagA进入胃上皮细胞以后能显著改变细胞表面极性并促使上皮间充质转化(EMT)的发生[26−27],从而提高Hp诱导胃癌发生的能力[2829]。其中涉及诸多信号通路,例如β-catenin、PI3K/Akt、ERK等[3031]。与CagA阴性菌株相比,CagA阳性的幽门螺杆菌菌株显著增加了患上胃癌的风险。CagA破坏了上皮细胞的极性(细胞内特殊的不对称组织),通过对人胃类器官和细胞系的三维培养的实验发现,肿瘤抑制因子ASPP2在幽门螺杆菌感染以及CagA破坏细胞极性等方面扮演着至关重要的角色[3233]。利用小分子或特定的肽干扰CagA-ASPP2的相互作用,可以显著减少细胞极性的丧失,并降低Hp在类器官中的定植率。在最近的研究中发现,Hp感染后CagA通过调控HDM2显著降低了胃癌细胞中CK2β的表达水平[34],并且促进了胃癌和EMT的发生[35]。YAP作为Hippo信号通路的关键效应因子,参与了多种细胞功能[36],如细胞增殖、分化、迁移和胃上皮细胞稳态维持等[37]。在目前的研究中已经报道,与Hp CagA阴性菌株感染的细胞相比,CagA阳性菌株感染的细胞中YAP的表达相比对照组显著增多。同时,CagA阳性菌株感染的细胞中YAP的核易位也增强,而E-cadherin的趋势则相反。感染CagA阳性菌株PMSS1和7.13以及在细胞中转染CagA均能导致YAP的表达量上升以及核易位能力增强[38],同时还上调了下游基因CTGFCYR61的表达[39]。研究中显示,E-cadherin的表达水平降低显著促进了AGS细胞的侵袭和迁移能力,而这种现象在添加YAP抑制剂或转染YAP siRNA处理后不再明显。据报道,在极化的上皮细胞中,CagA驱动的ERK信号通过激活鸟嘌呤核苷酸交换因子相关激酶c-Myc通路来阻止p21Waf1/Cip1的表达[40]。上皮细胞通过特定程序转化为具有间质表型的细胞,即上皮细胞失去了细胞极性,失去与基底膜的连接等上皮表型,这种现象被称为上皮间质转化(Epithelial-Mesenchymal Transition,EMT)。EMT程序的启动通常与功能性E-钙黏蛋白的丧失有关,在许多情况下,这是通过对EMT诱导的转录因子如Twist、Snail和Zeb1的转录抑制来实现的[41]。然而,最近的研究也表明,细胞间紧密连接的破坏也可能引发EMT现象。因此,CagA介导的细胞间紧密连接的破坏可能会触发极化上皮细胞中的EMT程序。据报道,CagA与E-cadherin的相互作用会损害E-cadherin的活性,这可能有助于EMT的进展[42]。CagA激活的ERK信号可以通过对细胞间黏附连接的破坏和提高细胞的运动性来进一步促进EMT的发生。在EMT期间,表达CagA的细胞的间充质标记物呈阳性,因此,CagA触发的EMT代表了一种异常去分化的细胞状态。CagA介导的EMT使胃上皮细胞数量异常增加,这会对胃黏膜的胃酸分泌等生理功能产生不良影响。对于Hp来说,降低酸性有利于其在胃内长期定植。同时,最近的研究报道了EMT主要发生于具有恶性特征的上皮细胞中,表明经历了EMT的含有CagA表达的上皮细胞具有肿瘤前病变的恶性特征。因此,CagA蛋白还具有一个意想不到的作用,主要体现在能有助于Hp在胃上皮更好地定植,使其在Hp感染的胃中持续创造和扩大具有EMT表型特征的细胞群。最新的研究报道了CagA还会破坏Wnt依赖的平面细胞极性(Wnt/PCP)[4344],使胃上皮细胞干性分化异常,促进幽门腺基底部收缩,加速胃炎以及溃疡的进程。

    CagA在宿主细胞内会和多种宿主蛋白(如致癌磷酸酶SHP2和极性调节激酶PAR1b)相互作用[45],干扰细胞的正常生理功能,从而促进CagA递送的胃上皮细胞发生肿瘤转化[4647]。CagA的每个EPIYA片段都经过宿主激酶如Src家族激酶(SFKs)和c-Ab的酪氨酸磷酸化,从而作为包含SH2结构域的宿主蛋白的停靠点[4850]。CagA通过酪氨酸磷酸化的EPIYA-C或EPIYA-D与原癌性磷酸酶SHP2的N-SH2结构域结合引起SHP2磷酸酶激活,从而解除ERK信号的调控。接着,CM基序结合并抑制极性调节丝氨酸/苏氨酸激酶PAR1b(也称为MARK2),导致细胞间连接破坏和极性缺失。研究发现CagA/PAR1b相互作用通过抑制PAR1b介导的BRCA1磷酸化破坏了BRCA1的核易位,并通过诱导BRCAness促进DNA双链断裂(DSBs)。CagA/PAR1b相互作用也能够激活Hippo信号,从而通过减少DNA损伤细胞的凋亡,帮助这些受损细胞逃过DSB的修复机制进一步促进胃癌的发生[51]。有趣的是,酪氨酸磷酸化的EPIYA-D与SHP2的结合强度大约是酪氨酸磷酸化的EPIYA-C的100倍,这可能部分解释了东亚地区胃癌高发病率的原因。CM基序还可以与c-Met HGF受体相互作用,并增强PI3K-AKT通路的激活[5254]。在近几年研究中发现Hp破坏了关键的肿瘤抑制机制:宿主应激和凋亡反应。据实验结果表明,CagA诱导了XIAP E3泛素连接酶的磷酸化,从而增强了宿主促凋亡因子Siva1的泛素化和蛋白酶体降解的发生,而这一过程由PI3K/Akt通路介导[5557]。同时,Hp抑制Siva1的表达会增加DNA受损的人类细胞的存活率,进一步促进DSBs的发展[5859]。CagA以一种菌株特异性的方式发挥作用,并与Hp诱导胃肿瘤的过程密切相关。研究发现,CagA的致癌潜能是由细胞自主决定的,胃癌的发展并不一定需要慢性炎症和所谓的癌前病变,如肠上皮化生。然而这一概念并不排除宿主对Hp感染的反应,如各种炎症细胞因子的产生提高了CagA的致癌潜力。同时,也有人认为,低水平的CagA引起胃上皮细胞增殖,而高水平的CagA通过诱导致癌应激引起肿瘤的发生。CagA与PAR1b的互作可抑制BRCA1的核转位,导致核内的BRCA缺失,进而诱导基因组不稳定性,且在p53功能缺失的情况下,CagA可进一步促进致癌性转化相关的体细胞突变。另外,目前已报道了Hp感染或CagA转染会导致胃癌以及胃上皮细胞中的KLF4表达下调[6061],提高胃上皮细胞以及胃癌细胞的增殖、迁移和侵袭能力。在机制上,作者发现CagA的转染会导致KLF4启动子的DNA甲基化,这一效应与TET1表达水平的显著降低有关[62]。CagA的表达通过诱导染色体结构和数量的异常引起染色体不稳定(CIN)的特征,增加氧化应激,并通过AID的(激活诱导胞苷脱氨酶)异常激活增加体细胞突变发生率[63]。作为致病性的肇事逃逸模型,CagA诱导的表观遗传改变或基因组不稳定性代替了CagA的直接致癌作用方式,并能够长期产生有害影响。

    根据上述内容得知,CagA在进入胃上皮细胞后会通过破坏上皮细胞极性引起EMT表型,并通过结合致癌蛋白激活致癌信号通路同时利用肇事逃逸的特性来引起长期的基因组不稳定以及基因毒性,逐步引导肿瘤的进展。据报道,CagA在免疫微环境中也同样发挥着调节功能。在幽门螺杆菌感染过程中,CagA/eEF1A1信号轴通过抑制细胞核中STAT3 S727位点的磷酸化活性,协同调控IL-6的表达[64]。此外,CagA通过eEF1A1在细胞质中招募PKCδ进而增加细胞核中STAT3 S727位点的磷酸化。此外,研究结果还表明,CagA通过形成CagA-eEF1A1-PKCδ复合物介导IL-6的生成并促进幽门螺杆菌感染诱导的胃癌发生[6567]。这些研究结果为了解CagA-eEF1A1信号轴在胃肿瘤发生过程中的作用提供了新的见解。据报道,幽门螺杆菌对Rev-Erbα的调控是通过其毒力因子CagA控制Rev-Erbα的表达来实现的。CagA在幽门螺杆菌的致病性中至关重要,它通过Ⅳ型分泌系统(T4SS)注射到GECs中,以调节GECs的表型和功能。在幽门螺杆菌中,CagA活性的丧失与GECs中Rev-Erbα表达受损、对Rev-Erbα介导的CCL21表达的抑制以及髓系细胞趋化性降低有关。目前的研究已确定CagA是CD8+T细胞反应所指向的主要抗原,据数据表明,CD8+T细胞的浸润主要发生在CagA阳性菌株感染后。因此,机体通过识别CagA实施保护特性,并通过分泌IFN-γ和其他免疫因子进行干预,这赋予了CD8+TRM细胞在对抗幽门螺杆菌感染的免疫反应中的重要功能。CagA递送至上皮细胞后调控了宿主的多种免疫相关信号通路,从而改变免疫微环境稳态并加速胃癌进展。

    目前对于CagA如何调控非编码RNA,特别是一些发挥促癌或者抑癌功能的microRNA的研究只停留在初步研究阶段,这一作用可能是通过表观遗传学修饰的途径来实现的。据有关文献报道,通过检测CagA下调的miRNAs中let-7的表达发现,CagA上调的c-Myc通过miR-101miR-26a的下调增强了Polycomb基因EZH2的表达,导致let-7启动子的组蛋白和DNA甲基化速度加快,从而抑制其自身的表达。这些结果揭示了CagA在致癌途径中的新功能,通过调控表观遗传相关基因EZH2DNMT,从而调控miRNA的表达水平[68]。这些机制将有助于进一步阐明幽门螺杆菌相关的癌变具体是如何引起的。另外有文献报道了miR-223-3p在幽门螺杆菌CagA诱导的胃癌发生和进展中的作用和调控机制。研究发现NF-κB/miR-223-3p/ARID1A信号级联可能是幽门螺杆菌诱导的胃癌慢性炎症的桥梁,从而为幽门螺杆菌的致病性提供了一种新的研究思路[69]。使用哺乳动物miRNA图谱微阵列发现miRNA-584miRNA-1290的表达在CagA过表达的稳转细胞中上调,miRNA-1290以ERK1/2依赖的方式上调,而miRNA-584被NF-kB激活。与此同时,miRNA-584通过抑制PPP2a的表达维持ERK1/2活性,miRNA-1290则通过抑制NKRF进而激活NF-kB。另外有研究表明,CagA蛋白通过上调hsa-miR-584has-miR-1290抑制了FoxA1的表达从而促进细胞EMT过程,干扰了细胞的正常发育和分化,进一步导致胃癌恶性程度升高[70]

    Hp CagA阳性菌株的慢性感染是引起胃部炎癌转化的重要危险因素。首先,Hp通过Ⅳ型分泌系统将CagA递送至胃上皮以及胃癌细胞内。然后,进入胞内的CagA在其C端区域的Glu-Pro-Ile-Tyr-Ala(EPIYA)基序上经历酪氨酸磷酸化,并作为致癌支架蛋白,以酪氨酸磷酸化依赖和不依赖的方式与多个宿主信号蛋白进行直接相互作用。利用体外培养的胃上皮细胞对CagA进行分析表明,CagA能通过赋予细胞多种癌症表型,自主促进细胞的恶性转化,CagA的体内致癌活性在慢性炎症的存在下将进一步增强。由于幽门螺杆菌感染在宿主细胞中可以触发促炎反应,因此能够在注入CagA蛋白的胃黏膜中产生一个前馈回路,进一步增强CagA的促炎致癌作用。鉴于Hp不总是在胃癌持续过程中处于定植状态,所以胃癌的发生以及发展过程也包括CagA引发的“肇事逃逸”。CagA导向的肇事逃逸致癌作用的概念可以理解为CagA蛋白的双重致癌形式:启动促癌信号通路和促进基因组不稳定性,从而加强EMT及后续肿瘤的进程。基于以上对Hp毒力蛋白CagA的促炎致癌研究,有必要深入挖掘CagA具体是通过何种驱动力以T4SS Ⅳ型分泌系统的方式从Hp传输到宿主内部的,目前已有研究初步报道了CagA的氨基酸基序和宿主内部的SHIP2存在化学键上的相互吸引,但这种传输动力和传输过程仍未被深入挖掘[24]。同时,Hp存在多种毒力因子,其分泌的各类内毒素以及外毒素之间的相互作用也未曾研究透彻,例如CagA和VacA之间存在复杂的拮抗以及协同的关系,这就有必要将它们共同置于Hp这一特殊的微生物宿主感染模型中进行研究。解决以上问题将有助于为Hp等微生物感染疾病找到更加可行和有效的治疗策略。

  • [1]

    Burucoa C, Axon A. Epidemiology of Helicobacter pylori infection[J]. Helicobacter, 2017, 22(Suppl 1). doi: 10.1111/hel.12403.

    [2]

    Carter EL, Boer JL, Farrugia MA, et al. Function of UreB in Klebsiella aerogenes urease[J]. Biochemistry, 2011, 50(43): 9296-9308. doi: 10.1021/bi2011064

    [3]

    Aziz F, Khan I, Shukla S, et al. Partners in crime: the Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer[J]. Pharmacol Ther, 2022, 232: 107994. doi: 10.1016/j.pharmthera.2021.107994

    [4]

    Cover TL, Lacy DB, Ohi MD. The Helicobacter pylori cag type IV secretion system[J]. Trends Microbiol, 2020, 28(8): 682-695. doi: 10.1016/j.tim.2020.02.004

    [5]

    Singh N, Baby D, Rajguru J, et al. Inflammation and cancer[J]. Ann Afr Med, 2019, 18(3): 121. doi: 10.4103/aam.aam_56_18

    [6]

    Ansari S, Yamaoka Y. Helicobacter pylori BabA in adaptation for gastric colonization[J]. World J Gastroenterol, 2017, 23(23): 4158-4169. doi: 10.3748/wjg.v23.i23.4158

    [7]

    Merino E, Flores-Encarnación M, Aguilar-Gutiérrez GR. Functional interaction and structural characteristics of unique components of Helicobacter pylori T4SS[J]. FEBS J, 2017, 284(21): 3540-3549. doi: 10.1111/febs.14092

    [8]

    Tan SM, Tompkins LS, Amieva MR. Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche[J]. PLoS Pathog, 2009, 5(5): e1000407. doi: 10.1371/journal.ppat.1000407

    [9]

    Backert S, Bernegger S, Skórko-Glonek J, et al. Extracellular HtrA serine proteases: an emerging new strategy in bacterial pathogenesis[J]. Cell Microbiol, 2018, 20(6): e12845. doi: 10.1111/cmi.12845

    [10]

    Wu LL, Li X, Li ZT, et al. HtrA serine proteases in cancers: a target of interest for cancer therapy[J]. Biomedecine Pharmacother, 2021, 139: 111603. doi: 10.1016/j.biopha.2021.111603

    [11]

    Xue RY, Liu C, Xiao QT, et al. HtrA family proteases of bacterial pathogens: pros and cons for their therapeutic use[J]. Clin Microbiol Infect, 2021, 27(4): 559-564. doi: 10.1016/j.cmi.2020.12.017

    [12]

    Kim KA, Kim D, Kim JH, et al. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd. 3 brain endothelial cells and rat ischemic stroke models[J]. Fluids Barriers CNS, 2020, 17(1): 21. doi: 10.1186/s12987-020-00182-8

    [13]

    Kuo WT, Odenwald MA, Turner JR, et al. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival[J]. Ann N Y Acad Sci, 2022, 1514(1): 21-33. doi: 10.1111/nyas.14798

    [14]

    Kuo WT, Shen L, Zuo L, et al. Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression[J]. Gastroenterology, 2019, 157(5): 1323-1337. doi: 10.1053/j.gastro.2019.07.058

    [15]

    Torices S, Daire L, Simon S, et al. Occludin: a gatekeeper of brain Infection by HIV-1[J]. Fluids Barriers CNS, 2023, 20(1): 73. doi: 10.1186/s12987-023-00476-7

    [16]

    Vaswani CM, Varkouhi AK, Gupta S, et al. Preventing occludin tight-junction disruption via inhibition of microRNA-193b-5p attenuates viral load and influenza-induced lung injury[J]. Mol Ther, 2023, 31(9): 2681-2701. doi: 10.1016/j.ymthe.2023.06.011

    [17]

    Hou JB, Yan D, Liu YD, et al. The roles of integrin α5β1 in human cancer[J]. Onco Targets Ther, 2020, 13: 13329-13344. doi: 10.2147/OTT.S273803

    [18]

    Zhou XM, Zhu HZ, Luo C, et al. Targeting integrin α5β1 in urological tumors: opportunities and challenges[J]. Front Oncol, 2023, 13: 1165073. doi: 10.3389/fonc.2023.1165073

    [19]

    Xiong X, Li BW, Zhou ZX, et al. The VirB system plays a crucial role in Brucella intracellular infection[J]. Int J Mol Sci, 2021, 22(24): 13637. doi: 10.3390/ijms222413637

    [20]

    Li YG, Christie PJ. The Agrobacterium VirB/VirD4 T4SS: mechanism and architecture defined through in vivo mutagenesis and chimeric systems[J]. Curr Top Microbiol Immunol, 2018, 418: 233-260.

    [21]

    Choi YH, Lai J, Kim MA, et al. CagL polymorphisms between East Asian and Western Helicobacter pylori are associated with different abilities to induce IL-8 secretion[J]. J Microbiol, 2021, 59(8): 763-770. doi: 10.1007/s12275-021-1136-2

    [22]

    Skoog EC, Morikis VA, Martin ME, et al. CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding[J]. mBio, 2018, 9(3): e00717-e00718.

    [23]

    Thomas MP, Erneux C, Potter BVL. SHIP2: structure, function and inhibition[J]. Chembiochem, 2017, 18(3): 233-247. doi: 10.1002/cbic.201600541

    [24]

    Fujii Y, Murata-Kamiya N, Hatakeyama M. Helicobacter pylori CagA oncoprotein interacts with SHIP2 to increase its delivery into gastric epithelial cells[J]. Cancer Sci, 2020, 111(5): 1596-1606. doi: 10.1111/cas.14391

    [25]

    Amorim S, Soares da Costa D, Pashkuleva I, et al. Hyaluronic acid of low molecular weight triggers the invasive “hummingbird” phenotype on gastric cancer cells[J]. Adv Biosyst, 2020, 4(11): e2000122. doi: 10.1002/adbi.202000122

    [26]

    Gundamaraju R, Lu WY, Paul MK, et al. Autophagy and EMT in cancer and metastasis: who controls whom[J]? Biochim Biophys Acta Mol Basis Dis, 2022, 1868(9): 166431. doi: 10.1016/j.bbadis.2022.166431

    [27]

    Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors[J]. Trends Cancer, 2020, 6(11): 942-950. doi: 10.1016/j.trecan.2020.06.005

    [28]

    Chen HX, Zhou L, Wu XR, et al. The PI3K/AKT pathway in the pathogenesis of prostate cancer[J]. Front Biosci (Landmark Ed), 2016, 21(5): 1084-1091. doi: 10.2741/4443

    [29]

    Peng Y, Wang YY, Zhou C, et al. PI3K/akt/mTOR pathway and its role in cancer therapeutics: are we making headway[J]? Front Oncol, 2022, 12: 819128. doi: 10.3389/fonc.2022.819128

    [30]

    Liu JQ, Xiao Q, Xiao JN, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3. doi: 10.1038/s41392-021-00762-6

    [31]

    Yu FY, Yu CH, Li FF, et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther, 2021, 6(1): 307. doi: 10.1038/s41392-021-00701-5

    [32]

    Jiang FY, Bian GX, Li JH. ASPP2 promotes cell apoptosis in cervical cancer through inhibiting autophagy[J]. Exp Ther Med, 2022, 24(6): 726. doi: 10.3892/etm.2022.11662

    [33]

    Liang BB, Jiang Y, Song SH, et al. ASPP2 suppresses tumour growth and stemness characteristics in HCC by inhibiting Warburg effect via WNT/β-catenin/HK2 axis[J]. J Cell Mol Med, 2023, 27(5): 659-671. doi: 10.1111/jcmm.17687

    [34]

    Hároníková L, Vojtěšek B. HDM2 and HDMX proteins in human cancer[J]. Klin Onkol, 2018, 31(Suppl 2): 63-70.

    [35]

    Quotti Tubi L, Mandato E, Canovas Nunes S, et al. CK2β-regulated signaling controls B cell differentiation and function[J]. Front Immunol, 2022, 13: 959138.

    [36]

    Chen LB, Jin XT, Ma J, et al. YAP at the progression of inflammation[J]. Front Cell Dev Biol, 2023, 11: 1204033. doi: 10.3389/fcell.2023.1204033

    [37]

    Wu ZM, Guan KL. Hippo signaling in embryogenesis and development[J]. Trends Biochem Sci, 2021, 46(1): 51-63. doi: 10.1016/j.tibs.2020.08.008

    [38]

    Stair MI, Winn CB, Burns MA, et al. Effects of chronic Helicobacter pylori strain PMSS1 infection on whole brain and gastric iron homeostasis in male INS-GAS mice[J]. Microbes Infect, 2023, 25(3): 105045. doi: 10.1016/j.micinf.2022.105045

    [39]

    Cheng TY, Wu MS, Hua KT, et al. Cyr61/CTGF/Nov family proteins in gastric carcinogenesis[J]. World J Gastroenterol, 2014, 20(7): 1694-1700. doi: 10.3748/wjg.v20.i7.1694

    [40]

    Boissier P, Huynh-Do U. The guanine nucleotide exchange factor Tiam1: a Janus-faced molecule in cellular signaling[J]. Cell Signal, 2014, 26(3): 483-491

    [41]

    Zoli M. Twist-stretch relations in nucleic acids[J]. Eur Biophys J, 2023, 52(8): 641-650. doi: 10.1007/s00249-023-01669-6

    [42]

    Corso G, Figueiredo J, de Angelis SP, et al. E-cadherin deregulation in breast cancer[J]. J Cell Mol Med, 2020, 24(11): 5930-5936. doi: 10.1111/jcmm.15140

    [43]

    Takahashi-Kanemitsu A, Lu MX, Knight CT, et al. The Helicobacter pylori CagA oncoprotein disrupts Wnt/PCP signaling and promotes hyperproliferation of pyloric gland base cells[J]. Sci Signal, 2023, 16(794): eabp9020. doi: 10.1126/scisignal.abp9020

    [44]

    VanderVorst K, Dreyer CA, Konopelski SE, et al. Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis[J]. Cancer Res, 2019, 79(8): 1719-1729. doi: 10.1158/0008-5472.CAN-18-2757

    [45]

    Asmamaw MD, Shi XJ, Zhang LR, et al. A comprehensive review of SHP2 and its role in cancer[J]. Cell Oncol (Dordr), 2022, 45(5): 729-753.

    [46]

    Imai S, Ooki T, Murata-Kamiya N, et al. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis[J]. Cell Host Microbe, 2021, 29(6): 941-958. e10.

    [47]

    Yamahashi Y, Hatakeyama M. PAR1b takes the stage in the morphogenetic and motogenetic activity of Helicobacter pylori CagA oncoprotein[J]. Cell Adh Migr, 2013, 7(1): 11-18. doi: 10.4161/cam.21936

    [48]

    Bildik G, Acılan C, Sahin GN, et al. C-Abl is not actıvated in DNA damage-induced and Tap63-mediated oocyte apoptosıs in human ovary[J]. Cell Death Dis, 2018, 9(10): 943. doi: 10.1038/s41419-018-1026-7

    [49]

    González-Martín A, Moyano T, Gutiérrez DA, et al. C-Abl regulates a synaptic plasticity-related transcriptional program involved in memory and learning[J]. Prog Neurobiol, 2021, 205: 102122. doi: 10.1016/j.pneurobio.2021.102122

    [50]

    Keshet R, Adler J, Ricardo Lax I, et al. C-Abl antagonizes the YAP oncogenic function[J]. Cell Death Differ, 2015, 22(6): 935-945. doi: 10.1038/cdd.2014.182

    [51]

    Ui A, Chiba N, Yasui A. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer[J]. Cancer Sci, 2020, 111(5): 1443-1451. doi: 10.1111/cas.14404

    [52]

    Sharma R, Malviya R. Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188869. doi: 10.1016/j.bbcan.2023.188869

    [53]

    Zambelli A, Biamonti G, Amato A. HGF/c-met signalling in the tumor microenvironment[J]. Adv Exp Med Biol, 2021, 1270: 31-44.

    [54]

    Zhao Y, Ye WL, Wang YD, et al. HGF/c-met: a key promoter in liver regeneration[J]. Front Pharmacol, 2022, 13: 808855. doi: 10.3389/fphar.2022.808855

    [55]

    Galbán S, Duckett CS. XIAP as a ubiquitin ligase in cellular signaling[J]. Cell Death Differ, 2010, 17(1): 54-60. doi: 10.1038/cdd.2009.81

    [56]

    Liao Y, Zhao JJ, Bulek K, et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis[J]. Nat Commun, 2020, 11(1): 900. doi: 10.1038/s41467-020-14698-y

    [57]

    Liu JY, Zhang DY, Luo WJ, et al. E3 ligase activity of XIAP RING domain is required for XIAP-mediated cancer cell migration, but not for its RhoGDI binding activity[J]. PLoS One, 2012, 7(4): e35682. doi: 10.1371/journal.pone.0035682

    [58]

    Palrasu M, Zaika E, El-Rifai W, et al. Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells[J]. J Clin Invest, 2020, 130(5): 2422-2434. doi: 10.1172/JCI130015

    [59]

    Palrasu M, Zaika E, Paulrasu K, et al. Helicobacter pylori pathogen inhibits cellular responses to oncogenic stress and apoptosis[J]. PLoS Pathog, 2022, 18(6): e1010628.

    [60]

    Liu ZX, Wu X, Tian YY, et al. H. pylori infection induces CXCL8 expression and promotes gastric cancer progress through downregulating KLF4[J]. Mol Carcinog, 2021, 60(8): 524-537. doi: 10.1002/mc.23309

    [61]

    Ou Y, Ren HF, Zhao RR, et al. Helicobacter pylori CagA promotes the malignant transformation of gastric mucosal epithelial cells through the dysregulation of the miR-155/KLF4 signaling pathway[J]. Mol Carcinog, 2019, 58(8): 1427-1437.

    [62]

    Zhao RR, Liu ZX, Xu WT, et al. Helicobacter pylori infection leads to KLF4 inactivation in gastric cancer through a TET1-mediated DNA methylation mechanism[J]. Cancer Med, 2020, 9(7): 2551-2563.

    [63]

    Karakus C. Development of a lateral flow immunoassay strip for rapid detection of CagA antigen of Helicobacter pylori[J]. J Immunoassay Immunochem, 2015, 36(3): 324-333. doi: 10.1080/15321819.2014.952440

    [64]

    Xu SH, Wu XQ, Zhang XY, et al. CagA orchestrates eEF1A1 and PKCδ to induce interleukin-6 expression in Helicobacter pylori-infected gastric epithelial cells[J]. Gut Pathog, 2020, 12: 31. doi: 10.1186/s13099-020-00368-3

    [65]

    Azadegan-Dehkordi F, Bagheri N, Shirzad M, et al. Correlation between mucosal IL-6 mRNA expression level and virulence factors of Helicobacter pylori in Iranian adult patients with chronic gastritis[J]. Jundishapur J Microbiol, 2015, 8(8): e21701.

    [66]

    Figura N, Di Cairano G, Moretti E, et al. Helicobacter pylori infection and autoimmune thyroid diseases: the role of virulent strains[J]. Antibiotics, 2019, 9(1): 12.

    [67]

    Lee KS, Kalantzis A, Jackson CB, et al. Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3γ via gastric STAT3 activation[J]. PLoS One, 2012, 7(2): e30786.

    [68]

    Hayashi Y, Tsujii M, Wang J, et al. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis[J]. Gut, 2013, 62(11): 1536-1546. doi: 10.1136/gutjnl-2011-301625

    [69]

    Yang FH, Xu YG, Liu C, et al. NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression[J]. Cell Death Dis, 2018, 9(1): 12. doi: 10.1038/s41419-017-0020-9

    [70]

    Wu J, Ji XW, Zhu LL, et al. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells[J]. Cancer Lett, 2013, 329(2): 155-163. doi: 10.1016/j.canlet.2012.10.038

计量
  • 文章访问数:  21
  • HTML全文浏览量:  1
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 刊出日期:  2025-02-24

目录

/

返回文章
返回
x 关闭 永久关闭