Research progress of acetylation in the pathogenesis of MASLD
-
摘要:
代谢功能障碍相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease, MASLD)是全球最常见的慢性肝病病因,其发病机制复杂,导致新药研发困难。蛋白乙酰化修饰作为一种常见的翻译后修饰,参与调控蛋白质稳定性、酶活性及其亚细胞定位,广泛发生于MASLD相关的脂质代谢、炎症反应和氧化应激等病理生理过程。本文对相关蛋白质乙酰化修饰异常改变在MASLD中的作用机制进行了综述,分析了基因表达数据库(gene expression omnibus, GEO)中MASLD患者肝组织中(去)乙酰化酶的表达水平并讨论了相关酶在动物模型的表达变化及作用机制,进一步探讨了靶向蛋白乙酰化修饰治疗MASLD的可行性,为MASLD药物研发提供新思路。
-
关键词:
- 代谢功能障碍相关脂肪性肝病 /
- 代谢功能障碍相关脂肪性肝炎 /
- 乙酰化 /
- 乙酰化酶
Abstract:Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent cause of chronic liver disease worldwide, and its intricate pathogenesis presents challenges in the development of new drugs. As a common way of post-translational modification, acetylation regulates protein stability, enzyme activity, and subcellular localization, occurring extensively in MASLD-associated processes such as lipid metabolism, inflammatory response, and oxidative stress. In this paper, we comprehensively review the mechanism of acetylation in MASLD, analyze the expression levels of acetylases in liver tissues of MASLD patients from the gene expression omnibus (GEO), discuss the changes in relevant enzyme expression and mechanisms in animal models, and further explore the feasibility of targeting acetylation for MASLD treatment, in the hope of offering a new perspective for advancing drug discovery in the field of MASLD.
-
动脉硬化性闭塞症(arteriosclerosis occlusion,ASO)是最常见的外周动脉疾病(peripheral artery disease,PAD)之一,是动脉粥样硬化导致下肢闭塞的慢性疾病[1]。随着动脉粥样硬化的危险因素与人口老龄化负担的增加,ASO发病率在全球范围内有所增加,被认为是心血管疾病发病和死亡的重要原因,吸烟、糖尿病和高血压等是ASO的主要危险因素[2]。
脉络宁是由牛膝、玄参、石斛、金银花和山银花组成的中药复方,具有活血化瘀、强肝补肾、滋阴清热的功效[3],现有注射液和口服液两种剂型。脉络宁口服液由脉络宁注射液改良剂型而得,口服液较注射液具有使用方便、作用温和持久等优点[4],可以通过抑制炎症细胞浸润和神经元凋亡发挥神经保护作用[5],并且能够改善ASO患者肢体麻木酸胀、皮肤发凉与间歇性跛行等症状,是临床上防治ASO安全有效的药物[6],但对于其发挥作用的机制尚不明确。研究表明[7],脉络宁注射液能够通过抑制NF-κB通路激活与炎症因子释放,改善内皮功能,发挥治疗ASO的作用,提示脉络宁口服液也可能通过抑制炎症反应治疗ASO。
动脉粥样硬化被认为是一种主要由血管细胞和免疫细胞引发的慢性炎症性血管疾病,炎症参与动脉粥样硬化从病变开始到病变进展、再到血栓形成并发症,几乎所有类型的单核吞噬细胞和淋巴细胞都参与动脉粥样硬化病变[8−9]。巨噬细胞作为趋化因子、细胞因子的主要来源,在持续的局部炎症反应和斑块破裂中发挥关键作用[10]。核苷酸结合寡聚化结构域样受体蛋白3(nucleotide binding oligomerization domain-like receptor protein 3,NLRP3)炎症小体能够感知胆固醇晶体激活的内源性危险信号,在巨噬细胞等参与动脉粥样硬化性心血管疾病发展的多种细胞类型中高度表达[8]。活化T细胞核因子5(nuclear factor of activated T-cells 5,NFAT5)是一种常见的转录因子,激活的NFAT5可以进一步促进其靶基因的表达,这些靶基因对血管生成及动脉硬化形成至关重要,同时NFTA5激活可促进ApoE-/-小鼠动脉粥样硬化的动脉中巨噬细胞浸润[11]。研究表明,采用脂多糖(lipopolysaccharide,LPS)诱导可以促进巨噬细胞表达NFAT5并使其作为核转录因子-κB(nuclear transcription factor-κB,NF-κB)的转录辅因子[12]。本研究旨在探究脉络宁口服液改善ASO的体外药效及机制,为其与ASO相关实验研究提供新的科学依据。
1. 材 料
1.1 样品和试剂
脉络宁口服液(金陵药业股份有限公司);脉络宁注射液(组方同脉络宁口服液,金陵药业股份有限公司);KRN2溴化物(美国MedChemExpress公司);阿托伐他汀粉末(上海麦克林生化科技股份有限公司);LPS(美国Sigma公司);胎牛血清、DMEM高糖培养基(上海逍鹏生物科技有限公司);磺胺、盐酸萘乙二胺(国药集团化学试剂有限公司);NF-κB-P65、p-NF-κB-P65抗体(美国Cell Signaling Technology公司);NLRP3抗体、山羊抗兔IgG H&L (Alexa Fluor® 488)(美国Abcam公司);cleaved-caspase1 (p20)抗体(美国Affinity Bioscience公司);pro-caspase1抗体(美国Immunoway公司);NFAT5、GAPDH抗体(美国Proteintech公司);siRNA-mate转染试剂(上海吉玛制药技术有限公司)。
1.2 仪 器
M 491型酶标仪(美国BioTek公司);稳压稳流电泳仪(美国Bio-Rad公司);Tanon
2600 型凝胶成像仪(上海天能科技有限公司);实时荧光定量PCR仪(美国赛默飞有限公司);DMi 8型倒置显微镜(德国Leica公司);超纯水系统(美国Millipore公司);LSM 800激光共聚焦显微镜(德国Carl Zeiss公司)。1.3 细胞株
小鼠单核巨噬细胞(RAW264.7)购自中国科学院上海细胞库。
2. 方 法
2.1 体外细胞培养、分组与给药
RAW264.7细胞在37 ℃,5% CO2培养条件下,用含有10%胎牛血清的DMEM高糖培养基培养细胞,取3~6代状态良好的细胞用于后续实验。模型组:细胞生长至60%加入LPS使其终浓度为1 μg/mL,继续培养6 h;给药组:细胞生长至60%加入LPS后,分别再加入(1)脉络宁口服液低、高浓度:使其生药量分别为8.35、16.7 mg/mL;(2)脉络宁注射液:使其生药量为16.66 mg/mL;(3)阿托伐他汀钙溶液(溶剂为DMSO):使其终浓度为5 μg/mL;(4)KRN2溴化物溶液(溶剂为DMSO):使其终浓度为0.8 μmol/L,继续培养6 h。
2.2 MTT法检测细胞活性
将细胞铺入96孔板中,生长至60%左右后,给药组每孔加入含脉络宁口服液培养基(生药量分别为8.35、16.70、25.05、33.40、50.10、66.80、83.50、100.2 mg/mL)200 μL,正常组加入空白培养基200 μL,每组设置3个复孔。于培养箱中培养6 h后,每孔加入5 mg/mL的MTT溶液20 μL,于培养箱中培养4 h后取出,吸出孔内液体,每孔加入DMSO 150 μL,并设置DMSO对照孔,使用震板机振荡5 min混匀,于酶标仪490 nm波长下检测吸收度(A)。细胞活性抑制率(%)=(A给药−A对照)/(A正常−A对照)×100。
2.3 Griess试剂法检测一氧化氮(NO)浓度
选取3代以后状态良好的RAW264.7细胞接种于96孔板中,待细胞生长至约60%,弃去培养基,按照如下分组进行造模与给药:(1)空白组:加入培养基200 μL。(2)模型组:加入LPS质量浓度为1 μg/mL的培养基200 μL。(3)给药组:加入LPS质量浓度为2 μg/mL的培养基100 μL与含药培养基[脉络宁口服液低浓度组(MLN OL)、脉络宁口服液高浓度组(MLN OH)、脉络宁注射液组(MLN I)及阿托伐他汀钙组(ATV)]100 μL。给药后将孔板放入培养箱培养,6 h后取出孔板,吸取细胞培养基上清液100 μL于新的96孔板中。提前配制好Griess试剂A液(磺胺100 mg溶于三级水10 mL,并加入磷酸600 μL助溶)和Griess试剂B液(10 mg盐酸萘乙二胺溶于三级水10 mL),避光条件下将A、B液混合,在每孔细胞培养基上清液中加入 Griess试剂混合液100 μL,使用震板机混匀5 min,于酶标仪波长540 nm下检测每孔的吸收度。按照NO标曲计算各孔NO浓度。
2.4 Q-PCR
将造模、给药培养后的细胞(分组同上)使用Trizol裂解后,通过氯仿萃取、异丙醇沉淀与75%乙醇纯化来提取RNA,使用反转录仪将RNA反转录为cDNA,按照说明书配置引物体系,在Q-PCR仪上进行荧光定量。采用的数据分析方法为2−∆∆CT法。引物由生工生物工程(上海)股份有限公司合成,序列详见表1。
Table 1. Primer sequences of quantitative PCRGene Forward primer (5′→3′) Reverse primer (5′→3′) Mouse caspase1 CTCGTACACGTCTTGCCCTC CCTCTTTCACCATCTCCAGAGC Mouse IL-18 TCCAACTGCAGACTGGCAC GGCAGGAGTCCAGAAAGCAT Mouse MMP9 CCGACTTTTGTGGTCTTCCCC ACGGGAACACACAGGGTTTG Mouse NLRP3 ATTTGTACCCAAGGCTGCTATC GGGCTTAGGTCCACACAGAAAG Mouse NFAT5 ATGGTACCCAGCAACAAGGG AGTGTAAGCTTTCCTGAGGCT Mouse GAPDH GACATTTGAGAAGGGCCACAT CAAAGAGGTCCAAAACAATCG 2.5 Western blot
将造模、给药培养后的细胞使用含蛋白酶抑制剂和磷酸酶抑制剂的RIPA裂解液充分裂解,定量后加入上样缓冲液,于沸水浴中加热10 min使蛋白变性。蛋白样品经SDS-PAGE凝胶电泳(60 V恒压电泳40 min后再120 V恒压电泳直至目的蛋白完全分开)并转至PVDF膜上(转膜条件根据目的蛋白分子量而定),5%脱脂奶粉室温封闭1.5 h,使用TBST洗净奶粉,放入NFAT5(1∶800)、NLRP3(1∶
1000 )、p-NF-κB-P65(1∶1000 )、NF-κB-P65(1∶1000 )、cleaved-caspase1 (p20)(1∶800)、caspase1(1∶800)、GAPDH(1∶3000 )一抗中,4 ℃摇床过夜孵育;TBST洗膜3次,室温孵育对应二抗(1∶3000 )2 h,采用显影仪曝光成像,Image J软件对条带的灰度进行分析。2.6 细胞转染
待细胞长至30%~50%即可转染。将NFAT5-siRNA、siRNA-mate转染试剂与无血清DMEM高糖培养基混合制备转染复合物,弃去细胞培养皿中的培养基,更换无血清培养基,将转染复合物加入培养基中混匀,放入培养箱培养6 h,弃去培养基更换含胎牛血清5%的DMEM高糖培养基培养,48 h后进行造模与给药。NFAT5-siRNA的序列为:sense (5′→3′)GAGGCACAAUAAACCAAAUTT,antisense (5′→3′)AUUUGGUUUAUUGUGCCUCTT。
2.7 免疫荧光
细胞在共聚焦小皿中生长至适宜密度时进行造模给药,分为空白组、模型组、KRN2组与MLN OH。造模给药结束使用4%多聚甲醛室温固定20 min、0.1% Triton X-100透化10 min、5% BSA溶液封闭2 h、过夜孵育NFAT5(1∶200)一抗。次日将一抗吸出,使用PBS清洗3遍,避光孵育荧光二抗1.5 h后使用PBS清洗3遍,加入DAPI探针,在激光共聚焦显微镜下观察到DAPI探针入核即可开始观察并拍照。
2.8 统计学分析
实验数据以$ \bar{x} \pm s $表示,使用GraphPad Prism 9.5.0软件进行分析,使用One-Way ANOVA进行数据显著性分析,P< 0.05代表具有统计学差异。
3. 结 果
3.1 脉络宁口服液对RAW264.7细胞活性的影响
通过MTT法测定了脉络宁口服液对RAW264.7细胞活性的影响。实验结果表明,与对照组相比,脉络宁口服液生药量在25.05 mg/mL及以下时,细胞活性无明显变化;高于25.05 mg/mL时,细胞活性逐渐下降。故以下研究中选取的脉络宁口服液给药的生药量在安全范围内,即为8.35、16.7 mg/mL。
3.2 脉络宁口服液对LPS诱导的RAW264.7细胞NO释放的影响
通过Griess试剂法探究了脉络宁口服液对NO释放的影响。如图1所示,与对照组相比,LPS诱导可促进RAW264.7细胞释放NO显著增加;与模型组相比,脉络宁口服液能够显著抑制LPS诱导的RAW264.7细胞NO释放且呈浓度依赖性,脉络宁注射液及阿托伐他汀钙均能抑制NO释放。结果表明,脉络宁口服液可以通过抑制NO释放来抑制LPS诱导的RAW264.7细胞的炎症反应,脉络宁口服液高浓度的药效优于脉络宁注射液、阿托伐他汀钙。
Figure 1. Mailuoning oral liquid (MLN O) inhibited the NO release induced by lipopolysaccharide (LPS) in RAW264.7 cells ($\bar{x} \pm s $, n=3). NO concentration was determined by Griess MLN I:Mailuoning injection; ATV:Atorvastatin##P<0.01 vs control group;*P<0.05, **P<0.01 vs model group;△△P < 0.013.3 脉络宁口服液对LPS诱导的RAW264.7细胞炎症反应相关标志物mRNA的影响
通过Q-PCR法检测了细胞中NFAT5、NLRP3、caspase1、IL-18和MMP9的mRNA水平。如图2所示,与正常组相比,LPS诱导后模型组细胞内NFAT5、NLRP3、caspase1、IL-18和MMP9的mRNA水平均上调;与模型组相比,脉络宁口服液下调RAW264.7细胞炎症模型中NFAT5、NLRP3、caspase1、IL-18和MMP9的mRNA水平且呈浓度依赖性,脉络宁注射液对于RAW264.7细胞炎症模型中上述指标均有下调作用,而阿托伐他汀钙仅能下调RAW264.7细胞炎症模型中NFAT5的mRNA水平,对于NLRP3、caspase1、IL-18和MMP9的mRNA水平无明显影响。结果表明,脉络宁口服液能抑制LPS诱导的炎症反应,脉络宁口服液高浓度的药效优于脉络宁注射液、阿托伐他汀钙或相当。
Figure 2. Mailuoning oral liquid reduced the mRNA levels of inflammatory mediators induced by LPS in RAW264.7 cells ($ \bar{x} \pm s $, n=3). The mRNA levels of NFAT5 (A), NLRP3 (B), caspase1 (C), IL-18 (D) and MMP9 (E) in RAW264.7 cells were measured by Q-PCR## P<0.01 vs control group;ns (not significant), *P<0.05, ** P<0.01 vs model group; △P<0.05, △△P<0.013.4 脉络宁口服液对LPS诱导的RAW264.7细胞NFAT5/NLRP3信号通路蛋白的影响
通过Western blot法探究了脉络宁口服液在体外对LPS诱导的RAW264.7细胞中NLRP3/NFAT5信号通路蛋白的影响。如图3所示,与正常组相比,LPS处理后RAW264.7细胞中NLRP3、cleaved-caspase1 (p20)、NFAT5蛋白表达量及NF-κB-P65磷酸化水平升高,表明LPS能够激活RAW264.7细胞中的NFAT5通路与NLRP3炎症小体;与模型组相比,脉络宁口服液抑制LPS诱导的RAW264.7细胞中NLRP3、cleaved-caspase1 (p20)、NFAT5蛋白表达量及NF-κB-P65磷酸化水平升高,且对NLRP3、cleaved-caspase1 (p20)的抑制效果呈浓度依赖性,脉络宁注射液与阿托伐他汀钙也对上述指标有抑制作用。结果表明脉络宁口服液能够抑制RAW264.7细胞中LPS引起的NLRP3炎症小体与NFAT5通路激活,脉络宁口服液高浓度的药效优于脉络宁注射液、阿托伐他汀钙或相当。
Figure 3. Mailuoning oral liquid reduced the protein expressions of NLRP3/NFAT5 signaling pathway induced by LPS in RAW264.7 cells detected by Western blot ($ \bar{x} \pm s $, n=3)A: Protein expressions of NLRP3, cleaved-caspase1 (p20), and pro-caspase1;B:Protein expression of NFAT5, p-NF-κB-P65, and NF-κB-P65##P<0.01 vs control group;ns,*P<0.05, **P<0.01 vs model group;△P<0.053.5 NFAT5-siRNA对LPS诱导的RAW264.7细胞NFAT5/NLRP3蛋白表达的影响
上述实验结果表明,脉络宁口服液可以在体外通过影响NFAT5/NLRP3信号通路的转录与翻译来发挥抗炎作用,因此推测NFAT5可能会影响NLRP3的表达。基于此,通过沉默NFAT5,在LPS诱导的RAW264.7细胞体外炎症模型上探究了NFAT5和NLRP3的关系。如图4所示,与对照组相比,NFAT5-siRNA明显抑制了NFAT5蛋白的表达;与模型组相比,NFAT5-siRNA组NLRP3蛋白表达水平下降,表明沉默NFAT5能够逆转LPS引起的RAW264.7细胞NLRP3蛋白表达增加;与NFAT5-siRNA组相比,脉络宁口服液组NLRP3蛋白表达水平有所下降。结果表明,沉默NFAT5可以下调NLRP3蛋白表达水平,可能是脉络宁口服液抗炎的机制之一。
Figure 4. NFAT5-siRNA reduced the protein expressions of NLRP3 and NFAT5 induced by LPS in RAW264.7 cells ($ \bar{x} \pm s$, n=3). The protein expressions of NLRP3 and NFAT5 in RAW264.7 cells were detected by Western blot## P<0.01 vs control group;*P<0.05, ** P<0.01 vs model group;&P<0.05 vs NFAT5-siRNA group3.6 脉络宁口服液和NFAT5抑制剂KRN2对LPS诱导的RAW264.7细胞NFAT5蛋白核转位的影响
上述实验结果提示,抑制NFAT5的表达可能是脉络宁口服液抑制NLRP3表达的作用靶点之一。接下来本研究通过免疫荧光法探究了脉络宁口服液对于LPS诱导的RAW264.7细胞NFAT5核转位的影响。如图5所示,与对照组相比,LPS能够促进RAW264.7细胞的NFAT5蛋白的核转位;与模型组相比,KRN2与脉络宁口服液均能逆转LPS对RAW264.7细胞的NFAT5蛋白核转位的促进作用。结果表明脉络宁口服液对于NFAT5的调控作用之一是影响其蛋白核转位。
4. 讨 论
脉络宁口服液具有抗动脉粥样硬化、抗脑缺血与免疫调节等作用,其中环烯醚萜苷类与有机酸类成分均能够通过抑制NF-κB通路发挥抗炎作用[13−16]。同时由于炎症[17]与巨噬细胞在ASO发生发展过程中发挥重要作用。因此,本研究选取LPS诱导RAW264.7细胞建立体外炎症模型,探究脉络宁口服液发挥抗炎的作用及其机制。
NFAT5属于Rel家族,包括NF-κB和NFATc蛋白,是一种协调细胞稳态的高渗反应性转录因子,也调节与细胞迁移和增殖相关的基因表达,通过介导平滑肌细胞的迁移和增殖,促进动脉硬化[18]。研究表明,NFAT5是巨噬细胞活化和存活的重要调节因子,促炎细胞因子或TLR配体(LPS等)可增强类风湿关节炎巨噬细胞中NFAT5的表达[19]。Lin等[18]发现将大鼠后肢股动脉及分支结扎使其缺血后,内收肌中NFAT5的mRNA与蛋白表达均升高,并且内收肌侧支血管周围巨噬细胞浸润与炎症因子分泌增加,提示NFAT5可能在ASO患者血管闭塞下肢中表达增加并激活炎症反应。
NLRP3炎症体主要存在于炎症刺激激活后的免疫细胞和炎症细胞中,主要由NLRP3蛋白、ASC和pro-caspase1组成,在受到免疫激活剂或外源因素刺激后,NLRP3与ASC相互作用,从而招募pro-caspase1并结合,产生NLRP3炎症小体,这种复合物的形成会引发pro-caspase1自裂,产生有活性的caspase-1 (p10/p20)四聚体,并切割IL-1β和IL-18前体产生相应有活性的炎症因子[20]。而LPS体外刺激RAW264.7细胞激活NLRP3炎症小体,引起炎症反应,促进NO释放,NO是NFAT5活性调节的直接靶标[21−23]。香烟烟雾中含有的大量促氧化剂,如NO诱导血管内皮功能障碍并激活巨噬细胞中的NLRP3炎症小体[24],并且巨噬细胞中合成释放的高水平NO诱导内皮损伤,均能促进动脉粥样硬化发展[25]。此外,炎症反应激活导致NO和MMP9同时上调[26]。MMP9促进血小板聚集、内皮细胞与平滑肌细胞的异常增殖迁移,促进炎症反应,增加动脉粥样硬化斑块的不稳定性与ASO患者术后再狭窄的风险[27]。NLRP3是MMP9的关键上游,均在心脑血管疾病中发挥重要作用[28]。高渗透压通过NFAT5介导诱发炎症反应,而使MMP9 mRNA表达增加[29]。本研究结果表明,LPS诱导使RAW264.7细胞中NO释放增加,上调MMP9的mRNA水平,激活NFAT5通路与NLRP3炎症小体,促进炎症反应发生,而脉络宁口服液可以有效抑制LPS引起的炎症反应,并且NFAT5与NLRP3可能是脉络宁口服液发挥抗炎作用的靶点。
研究表明激活NF-κB通路可促进NLRP3炎症小体激活[30],而NFAT5可以辅助NF-κB转录,基于此本研究提出猜想:NFAT5是否参与调控NLRP3的表达。实验结果显示,沉默NFAT5时,LPS诱导的NLRP3蛋白表达水平升高的趋势被抑制,表明NFAT5可能参与调控NLRP3的表达。KRN2是NFAT5的抑制剂,能够通过阻断NF-κB与NFAT5启动子区域的结合,选择性地抑制NFAT5的转录激活,从而下调巨噬细胞中促炎性NFAT5靶标基因的表达[19]。本研究实验结果表明,KRN2与脉络宁口服液均能抑制NFAT5的蛋白表达与核转位。
综上所述,本研究结合ASO的发病机制以及脉络宁制剂的前期临床与药理研究,通过LPS诱导的RAW264.7细胞经典炎症模型,发现脉络宁口服液发挥抗炎作用的机制之一是抑制NFAT5/NLRP3信号通路,并且NFAT5可能参与NLRP3表达的调控,为ASO治疗与脉络宁口服液的药理研究提供了实验依据,但二者如何调控仍需进一步研究。此外,本研究仅在体外探究了脉络宁口服液对ASO病程中炎症反应相关的改善机制,后续需在体内进行验证,同时联合内皮细胞进一步探究脉络宁口服液改善ASO的体外机制。
-
表 1 MASLD的临床Ⅲ/Ⅳ期在研药物
治疗途径 药物名称 类 型 临床分期 新陈代谢[13] Aramchol SCD-1抑制剂 Ⅲ MSDC-0602K 胰岛素增敏剂 Ⅲ Semaglutide GLP-1R激动剂 Ⅳ Dulaglutide GLP-1R 激动剂 Ⅳ Obeticholic acid FXR激动剂 Ⅲ Elafibranor PPARα/δ双重激动剂 Ⅲ Saroglitazar PPARα/δ双重激动剂 Ⅳ Lanifibranor PPAR激动剂 Ⅲ Erugliflozin SLGT-2抑制剂 Ⅳ Empagliflozin SLGT-2抑制剂 Ⅳ 炎症反应[14] Cenicriviroc CCR2/CCR5双拮抗剂 Ⅲ Belapectin GAL-3抑制剂 Ⅲ 细胞凋亡[15] Selonsertib ASK-1抑制剂 Ⅲ SCD-1:硬脂酰辅酶A去饱和酶1;GLP-1R:胰高血糖素样肽1受体;FXR:法尼醇X受体;PPAR:过氧化物酶体增殖物激活受体;SLGT-2:钠-葡萄糖协同转运蛋白2;CCR2/CCR5:C-C 趋化因子配体2型和5型;GAL-3:半乳糖凝集素-3;ASK-1:凋亡信号调节激酶1 表 2 MASLD中的乙酰化酶/去乙酰化酶
酶 MASLD中的表达 敲除细胞/动物 抑制/激活作用 SIRT2[41] 下调 加剧细胞脂肪堆积及HFD 诱导的小鼠肝脂肪变性和炎症反应 AGK2抑制SIRT2表达,阻断水飞蓟宾的抗炎作用 SIRT3[42−43] 下调 加剧HFD诱导的小鼠肝脂肪变性和炎症反应 蓝莓叶多酚激活AMPK/PGC-1α/SIRT3信号转导轴,缓解大鼠肝脂肪变性、氧化应激和炎症 SIRT6[44,48] 下调 加剧西方饮食诱导的小鼠MASH 薯蓣皂苷元激活SIRT6表达,缓解脂质积累和氧化应激 HDAC3[45] 上调 / 染料木黄酮抑制HDAC3表达,缓解HFHF饮食诱导的
大鼠MASHP300[46−47] 上调 / 单宁酸、3,4-二羟基甲苯抑制P300活性,
下调HepG2 脂肪生成相关基因表达并减弱脂质积累HFD:高脂肪饮食;AGK2:2-氰基-3-[5-(2,5-二氯苯基)-2-呋喃基]-N-5-喹啉基-2-丙烯酰胺;HFHF:高脂肪高果糖饮食;HepG2:人肝肿瘤细胞 -
[1] Byrne CD, Targher G. NAFLD: a multisystem disease[J]. J Hepatol, 2015, 62 (1 Suppl): S47-S64.
[2] Eslam M, Sanyal AJ, George J, et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. doi: 10.1053/j.gastro.2019.11.312
[3] Devarbhavi H, Asrani SK, Arab JP, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79(2): 516-537. doi: 10.1016/j.jhep.2023.03.017
[4] Du T, Chen J, Shen X. Research advances in susceptibility genes of non-alcoholic fatty liver disease and its association with type 2 diabetes[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(5): 537-544. [5] Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. doi: 10.1038/nrgastro.2017.109
[6] Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cell Mol Life Sci, 2018, 75(18): 3313-3327. doi: 10.1007/s00018-018-2860-6
[7] Chen Z, Tian RF, She ZG, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2020, 152: 116-141. doi: 10.1016/j.freeradbiomed.2020.02.025
[8] Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis[J]. Gastroenterology, 2016, 150(8): 1769-1777. doi: 10.1053/j.gastro.2016.02.066
[9] Nassir F. NAFLD: mechanisms, treatments, and biomarkers[J]. Biomolecules, 2022, 12(6): 824. doi: 10.3390/biom12060824
[10] Masoodi M, Gastaldelli A, Hyötyläinen T, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(12): 835-856. doi: 10.1038/s41575-021-00502-9
[11] Bohinc BN, Michelotti G, Xie GH, et al. Repair-related activation of hedgehog signaling in stromal cells promotes intrahepatic hypothyroidism[J]. Endocrinology, 2014, 155(11): 4591-4601. doi: 10.1210/en.2014-1302
[12] Harrison SA, Bedossa P, Guy CD, et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis[J]. N Engl J Med, 2024, 390(6): 497-509. doi: 10.1056/NEJMoa2309000
[13] Zeng J, Fan JG, Francque SM. Therapeutic management of metabolic dysfunction associated steatotic liver disease[J]. United European Gastroenterol J, 2024, 12(2): 177-186. doi: 10.1002/ueg2.12525
[14] Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease[J]. Gut, 2017, 66(1): 180-190. doi: 10.1136/gutjnl-2016-312431
[15] Zhao SS, Zhang L, Zhao JZ, et al. Characteristics of contemporary drug clinical trials regarding the treatment of non-alcoholic steatohepatitis[J]. Diabetes MeTable Syndr, 2024, 18(1): 102921. doi: 10.1016/j.dsx.2023.102921
[16] Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 329-349. doi: 10.1038/s41580-021-00441-y
[17] Drazic A, Myklebust LM, Ree R, et al. The world of protein acetylation[J]. Biochim Biophys Acta, 2016, 1864(10): 1372-1401. doi: 10.1016/j.bbapap.2016.06.007
[18] Whedon SD, Cole PA. KATs off: Biomedical insights from lysine acetyltransferase inhibitors[J]. Curr Opin Chem Biol, 2023, 72: 102255. doi: 10.1016/j.cbpa.2022.102255
[19] Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes[J]. Cold Spring Harb Perspect Biol, 2014, 6(4): a018713. doi: 10.1101/cshperspect.a018713
[20] Yang S, Hwang S, Kim B, et al. Fatty acid oxidation facilitates DNA double-strand break repair by promoting PARP1 acetylation[J]. Cell Death Dis, 2023, 14(7): 435. doi: 10.1038/s41419-023-05968-w
[21] Park JM, Jo SH, Kim MY, et al. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813. doi: 10.1007/s13238-015-0204-y
[22] Liu DX, Qian DM, Wang B, et al. p300-Dependent ATF5 acetylation is essential for Egr-1 gene activation and cell proliferation and survival[J]. Mol Cell Biol, 2011, 31(18): 3906-3916. doi: 10.1128/MCB.05887-11
[23] Wang W, Zheng YX, Sun SH, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence[J]. Sci Transl Med, 2021, 13(575): eabd2655. doi: 10.1126/scitranslmed.abd2655
[24] Zhang SC, Xu PY, Zhu ZW, et al. Acetylation of p65Lys310 by p300 in macrophages mediates anti-inflammatory property of berberine[J]. Redox Biol, 2023, 62: 102704. doi: 10.1016/j.redox.2023.102704
[25] Chi ZX, Chen S, Xu T, et al. Histone deacetylase 3 couples mitochondria to drive IL-1β-dependent inflammation by configuring fatty acid oxidation[J]. Mol Cell, 2020, 80(1): 43-58. e7.
[26] Bricambert J, Miranda J, Benhamed F, et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice[J]. J Clin Invest, 2010, 120(12): 4316-4331. doi: 10.1172/JCI41624
[27] Hou TY, Tian Y, Cao ZY, et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation[J]. Mol Cell, 2022, 82(21): 4099-4115. e9.
[28] Wei YD, Tian C, Zhao YX, et al. MRG15 orchestrates rhythmic epigenomic remodelling and controls hepatic lipid metabolism[J]. Nat Metab, 2020, 2(5): 447-460. doi: 10.1038/s42255-020-0203-z
[29] Tian C, Min XW, Zhao YX, et al. MRG15 aggravates non-alcoholic steatohepatitis progression by regulating the mitochondrial proteolytic degradation of TUFM[J]. J Hepatol, 2022, 77(6): 1491-1503. doi: 10.1016/j.jhep.2022.07.017
[30] Lin RT, Tao R, Gao X, et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth[J]. Mol Cell, 2013, 51(4): 506-518. doi: 10.1016/j.molcel.2013.07.002
[31] Guo L, Guo YY, Li BY, et al. Enhanced acetylation of ATP-citrate lyase promotes the progression of nonalcoholic fatty liver disease[J]. J Biol Chem, 2019, 294(31): 11805-11816. doi: 10.1074/jbc.RA119.008708
[32] Li XZ, Ding KX, Li XY, et al. Deficiency of WTAP in hepatocytes induces lipoatrophy and non-alcoholic steatohepatitis (NASH)[J]. Nat Commun, 2022, 13(1): 4549. doi: 10.1038/s41467-022-32163-w
[33] Mikula M, Majewska A, Ledwon JK, et al. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver[J]. Int J Mol Med, 2014, 34(6): 1647-1654. doi: 10.3892/ijmm.2014.1958
[34] Ozden O, Park SH, Kim HS, et al. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress[J]. Aging, 2011, 3(2): 102-107. doi: 10.18632/aging.100291
[35] Zhang JL, Zhao YJ, Wang SH, et al. CREBH alleviates mitochondrial oxidative stress through SIRT3 mediating deacetylation of MnSOD and suppression of Nlrp3 inflammasome in NASH[J]. Free Radic Biol Med, 2022, 190: 28-41. doi: 10.1016/j.freeradbiomed.2022.07.018
[36] Yang XD, Chen Z, Ye L, et al. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF-κB p65 pathway[J]. Pharm Biol, 2021, 59(1): 922-932.
[37] Sarkar A, Mitra P, Lahiri A, et al. Butyrate limits inflammatory macrophage niche in NASH[J]. Cell Death Dis, 2023, 14(5): 332. doi: 10.1038/s41419-023-05853-6
[38] Ha TS, Shin TG, Jo IJ, et al. Lactate clearance and mortality in septic patients with hepatic dysfunction[J]. Am J Emerg Med, 2016, 34(6): 1011-1015. doi: 10.1016/j.ajem.2016.02.053
[39] Wang TX, Chen K, Yao WL, et al. Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance[J]. J Hepatol, 2021, 74(5): 1038-1052. doi: 10.1016/j.jhep.2020.11.028
[40] Zhang LQ, Zhang ZG, Li CB, et al. S100A11 promotes liver steatosis via FOXO1-mediated autophagy and lipogenesis[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(3): 697-724. doi: 10.1016/j.jcmgh.2020.10.006
[41] Ren HH, Hu FQ, Wang D, et al. Sirtuin 2 prevents liver steatosis and metabolic disorders by deacetylation of hepatocyte nuclear factor 4α[J]. Hepatology, 2021, 74(2): 723-740. doi: 10.1002/hep.31773
[42] Chen MT, Hui SC, Lang HD, et al. SIRT3 deficiency promotes high-fat diet-induced nonalcoholic fatty liver disease in correlation with impaired intestinal permeability through gut microbial dysbiosis[J]. Mol Nutr Food Res, 2019, 63(4): e1800612. doi: 10.1002/mnfr.201800612
[43] Li Z, Zhang HX, Li Y, et al. Phytotherapy using blueberry leaf polyphenols to alleviate non-alcoholic fatty liver disease through improving mitochondrial function and oxidative defense[J]. Phytomedicine, 2020, 69: 153209. doi: 10.1016/j.phymed.2020.153209
[44] Zhong XL, Huang MH, Kim HG, et al. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2): 341-364. doi: 10.1016/j.jcmgh.2020.04.005
[45] Witayavanitkul N, Werawatganon D, Chayanupatkul M, et al. Genistein and exercise treatment reduced NASH related HDAC3, IL-13 and MMP-12 expressions in ovariectomized rats fed with high fat high fructose diet[J]. J Tradit Complement Med, 2021, 11(6): 503-512. doi: 10.1016/j.jtcme.2021.04.004
[46] Lee J, Song JH, Chung MY, et al. 3, 4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity[J]. Acta Pharmacol Sin, 2021, 42(9): 1449-1460. doi: 10.1038/s41401-020-00571-7
[47] Chung MY, Song JH, Lee J, et al. Tannic acid, a novel histone acetyltransferase inhibitor, prevents non-alcoholic fatty liver disease both in vivo and in vitro model[J]. Mol Metab, 2019, 19: 34-48. doi: 10.1016/j.molmet.2018.11.001
[48] Nie KX, Gao Y, Chen S, et al. Diosgenin attenuates non-alcoholic fatty liver disease in type 2 diabetes through regulating SIRT6-related fatty acid uptake[J]. Phytomedicine, 2023, 111: 154661. doi: 10.1016/j.phymed.2023.154661
[49] Zhang X, Jiang ZH, Jin XL, et al. Efficacy of traditional Chinese medicine combined with silibinin on nonalcoholic fatty liver disease: a meta-analysis and systematic review[J]. Medicine, 2024, 103(5): e37052. doi: 10.1097/MD.0000000000037052
[50] He X, Li YB, Deng XY, et al. Integrative evidence construction for resveratrol treatment of nonalcoholic fatty liver disease: preclinical and clinical meta-analyses[J]. Front Pharmacol, 2023, 14: 1230783. doi: 10.3389/fphar.2023.1230783
[51] He YH, Wang H, Lin SL, et al. Advanced effect of curcumin and resveratrol on mitigating hepatic steatosis in metabolic associated fatty liver disease via the PI3K/AKT/mTOR and HIF-1/VEGF cascade[J]. Biomedecine Pharmacother, 2023, 165: 115279. doi: 10.1016/j.biopha.2023.115279