高级检索

代谢功能障碍相关脂肪性肝病中蛋白乙酰化修饰的研究进展

颜利, 居峰禹, 沈新, 于烨, 王文辉

颜利,居峰禹,沈新,等. 代谢功能障碍相关脂肪性肝病中蛋白乙酰化修饰的研究进展[J]. 中国药科大学学报,2025,56(1):31 − 39. DOI: 10.11665/j.issn.1000-5048.2024030103
引用本文: 颜利,居峰禹,沈新,等. 代谢功能障碍相关脂肪性肝病中蛋白乙酰化修饰的研究进展[J]. 中国药科大学学报,2025,56(1):31 − 39. DOI: 10.11665/j.issn.1000-5048.2024030103
YAN Li, JU Fengyu, SHEN Xin, et al. Research progress of acetylation in the pathogenesis of MASLD[J]. J China Pharm Univ, 2025, 56(1): 31 − 39. DOI: 10.11665/j.issn.1000-5048.2024030103
Citation: YAN Li, JU Fengyu, SHEN Xin, et al. Research progress of acetylation in the pathogenesis of MASLD[J]. J China Pharm Univ, 2025, 56(1): 31 − 39. DOI: 10.11665/j.issn.1000-5048.2024030103

代谢功能障碍相关脂肪性肝病中蛋白乙酰化修饰的研究进展

基金项目: 国家自然科学基金项目(No. 81902480);湖南省“湖湘”高层次人才聚集工程项目(2021RC5013)
详细信息
    通讯作者:

    于烨: Tel:025-86185472 E-mail:yuye@cpu.edu.cn

    王文辉: Tel:025-86185328 E-mail:wangwh3824@163.com

  • 中图分类号: R915

Research progress of acetylation in the pathogenesis of MASLD

Funds: This study was supported by the National Natural Science Foundation of China (No. 81902480) and Hunan Provincial “Huxiang” High-level Talent Gathering Project (2021RC5013)
  • 摘要:

    代谢功能障碍相关脂肪性肝病(metabolic dysfunction-associated steatotic liver disease, MASLD)是全球最常见的慢性肝病病因,其发病机制复杂,导致新药研发困难。蛋白乙酰化修饰作为一种常见的翻译后修饰,参与调控蛋白质稳定性、酶活性及其亚细胞定位,广泛发生于MASLD相关的脂质代谢、炎症反应和氧化应激等病理生理过程。本文对相关蛋白质乙酰化修饰异常改变在MASLD中的作用机制进行了综述,分析了基因表达数据库(gene expression omnibus, GEO)中MASLD患者肝组织中(去)乙酰化酶的表达水平并讨论了相关酶在动物模型的表达变化及作用机制,进一步探讨了靶向蛋白乙酰化修饰治疗MASLD的可行性,为MASLD药物研发提供新思路。

    Abstract:

    Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent cause of chronic liver disease worldwide, and its intricate pathogenesis presents challenges in the development of new drugs. As a common way of post-translational modification, acetylation regulates protein stability, enzyme activity, and subcellular localization, occurring extensively in MASLD-associated processes such as lipid metabolism, inflammatory response, and oxidative stress. In this paper, we comprehensively review the mechanism of acetylation in MASLD, analyze the expression levels of acetylases in liver tissues of MASLD patients from the gene expression omnibus (GEO), discuss the changes in relevant enzyme expression and mechanisms in animal models, and further explore the feasibility of targeting acetylation for MASLD treatment, in the hope of offering a new perspective for advancing drug discovery in the field of MASLD.

  • 图  1   蛋白乙酰化修饰的分类(By Figdraw)

    图  2   MASLD中的蛋白乙酰化/去乙酰化修饰(By Figdraw)

    ChREBP:碳水化合物反应性元件结合蛋白;LDHB:乳酸脱氢酶B;FOXO1:叉头框蛋白O1;ACSL5:长链脂酰辅酶A合成酶5;ACLY:ATP-柠檬酸合酶;MnSOD:锰超氧化物歧化酶;TNF-α:肿瘤坏死因子-α;CCL2:趋化因子配体2

    图  3   MASLD患者肝脏中乙酰化酶和去乙酰化酶的转录水平($\bar{x}\pm s $)

    A:GCN5; B:HAT1; C:TIP60; D:SIRT1; E:SIRT5; F:HDAC1HC:健康对照人群;HO:健康肥胖人群;MAFL:代谢功能障碍相关脂肪肝患者;MASH:代谢功能障碍相关脂肪性肝炎患者;(来源于GDS4881数据集;HC:n = 14,HO:n = 27,MAFL:n = 14,MASH:n = 18; One-Way ANOVA;*P<0.05,**P<0.01,***P<0.001)

    表  1   MASLD的临床Ⅲ/Ⅳ期在研药物

    治疗途径 药物名称 类 型 临床分期
    新陈代谢[13] Aramchol SCD-1抑制剂
    MSDC-0602K 胰岛素增敏剂
    Semaglutide GLP-1R激动剂
    Dulaglutide GLP-1R 激动剂
    Obeticholic acid FXR激动剂
    Elafibranor PPARα/δ双重激动剂
    Saroglitazar PPARα/δ双重激动剂
    Lanifibranor PPAR激动剂
    Erugliflozin SLGT-2抑制剂
    Empagliflozin SLGT-2抑制剂
    炎症反应[14] Cenicriviroc CCR2/CCR5双拮抗剂
    Belapectin GAL-3抑制剂
    细胞凋亡[15] Selonsertib ASK-1抑制剂
    SCD-1:硬脂酰辅酶A去饱和酶1;GLP-1R:胰高血糖素样肽1受体;FXR:法尼醇X受体;PPAR:过氧化物酶体增殖物激活受体;SLGT-2:钠-葡萄糖协同转运蛋白2;CCR2/CCR5:C-C 趋化因子配体2型和5型;GAL-3:半乳糖凝集素-3;ASK-1:凋亡信号调节激酶1
    下载: 导出CSV

    表  2   MASLD中的乙酰化酶/去乙酰化酶

    MASLD中的表达 敲除细胞/动物 抑制/激活作用
    SIRT2[41] 下调 加剧细胞脂肪堆积及HFD 诱导的小鼠肝脂肪变性和炎症反应 AGK2抑制SIRT2表达,阻断水飞蓟宾的抗炎作用
    SIRT3[4243] 下调 加剧HFD诱导的小鼠肝脂肪变性和炎症反应 蓝莓叶多酚激活AMPK/PGC-1α/SIRT3信号转导轴,缓解大鼠肝脂肪变性、氧化应激和炎症
    SIRT6[44,48] 下调 加剧西方饮食诱导的小鼠MASH 薯蓣皂苷元激活SIRT6表达,缓解脂质积累和氧化应激
    HDAC3[45] 上调 / 染料木黄酮抑制HDAC3表达,缓解HFHF饮食诱导的
    大鼠MASH
    P300[4647] 上调 / 单宁酸、3,4-二羟基甲苯抑制P300活性,
    下调HepG2 脂肪生成相关基因表达并减弱脂质积累
    HFD:高脂肪饮食;AGK2:2-氰基-3-[5-(2,5-二氯苯基)-2-呋喃基]-N-5-喹啉基-2-丙烯酰胺;HFHF:高脂肪高果糖饮食;HepG2:人肝肿瘤细胞
    下载: 导出CSV
  • [1]

    Byrne CD, Targher G. NAFLD: a multisystem disease[J]. J Hepatol, 2015, 62 (1 Suppl): S47-S64.

    [2]

    Eslam M, Sanyal AJ, George J, et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. doi: 10.1053/j.gastro.2019.11.312

    [3]

    Devarbhavi H, Asrani SK, Arab JP, et al. Global burden of liver disease: 2023 update[J]. J Hepatol, 2023, 79(2): 516-537. doi: 10.1016/j.jhep.2023.03.017

    [4] Du T, Chen J, Shen X. Research advances in susceptibility genes of non-alcoholic fatty liver disease and its association with type 2 diabetes[J]. J China Pharm Univ (中国药科大学学报), 2018, 49(5): 537-544.
    [5]

    Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. doi: 10.1038/nrgastro.2017.109

    [6]

    Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cell Mol Life Sci, 2018, 75(18): 3313-3327. doi: 10.1007/s00018-018-2860-6

    [7]

    Chen Z, Tian RF, She ZG, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2020, 152: 116-141. doi: 10.1016/j.freeradbiomed.2020.02.025

    [8]

    Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis[J]. Gastroenterology, 2016, 150(8): 1769-1777. doi: 10.1053/j.gastro.2016.02.066

    [9]

    Nassir F. NAFLD: mechanisms, treatments, and biomarkers[J]. Biomolecules, 2022, 12(6): 824. doi: 10.3390/biom12060824

    [10]

    Masoodi M, Gastaldelli A, Hyötyläinen T, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(12): 835-856. doi: 10.1038/s41575-021-00502-9

    [11]

    Bohinc BN, Michelotti G, Xie GH, et al. Repair-related activation of hedgehog signaling in stromal cells promotes intrahepatic hypothyroidism[J]. Endocrinology, 2014, 155(11): 4591-4601. doi: 10.1210/en.2014-1302

    [12]

    Harrison SA, Bedossa P, Guy CD, et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis[J]. N Engl J Med, 2024, 390(6): 497-509. doi: 10.1056/NEJMoa2309000

    [13]

    Zeng J, Fan JG, Francque SM. Therapeutic management of metabolic dysfunction associated steatotic liver disease[J]. United European Gastroenterol J, 2024, 12(2): 177-186. doi: 10.1002/ueg2.12525

    [14]

    Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease[J]. Gut, 2017, 66(1): 180-190. doi: 10.1136/gutjnl-2016-312431

    [15]

    Zhao SS, Zhang L, Zhao JZ, et al. Characteristics of contemporary drug clinical trials regarding the treatment of non-alcoholic steatohepatitis[J]. Diabetes MeTable Syndr, 2024, 18(1): 102921. doi: 10.1016/j.dsx.2023.102921

    [16]

    Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5): 329-349. doi: 10.1038/s41580-021-00441-y

    [17]

    Drazic A, Myklebust LM, Ree R, et al. The world of protein acetylation[J]. Biochim Biophys Acta, 2016, 1864(10): 1372-1401. doi: 10.1016/j.bbapap.2016.06.007

    [18]

    Whedon SD, Cole PA. KATs off: Biomedical insights from lysine acetyltransferase inhibitors[J]. Curr Opin Chem Biol, 2023, 72: 102255. doi: 10.1016/j.cbpa.2022.102255

    [19]

    Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes[J]. Cold Spring Harb Perspect Biol, 2014, 6(4): a018713. doi: 10.1101/cshperspect.a018713

    [20]

    Yang S, Hwang S, Kim B, et al. Fatty acid oxidation facilitates DNA double-strand break repair by promoting PARP1 acetylation[J]. Cell Death Dis, 2023, 14(7): 435. doi: 10.1038/s41419-023-05968-w

    [21]

    Park JM, Jo SH, Kim MY, et al. Role of transcription factor acetylation in the regulation of metabolic homeostasis[J]. Protein Cell, 2015, 6(11): 804-813. doi: 10.1007/s13238-015-0204-y

    [22]

    Liu DX, Qian DM, Wang B, et al. p300-Dependent ATF5 acetylation is essential for Egr-1 gene activation and cell proliferation and survival[J]. Mol Cell Biol, 2011, 31(18): 3906-3916. doi: 10.1128/MCB.05887-11

    [23]

    Wang W, Zheng YX, Sun SH, et al. A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence[J]. Sci Transl Med, 2021, 13(575): eabd2655. doi: 10.1126/scitranslmed.abd2655

    [24]

    Zhang SC, Xu PY, Zhu ZW, et al. Acetylation of p65Lys310 by p300 in macrophages mediates anti-inflammatory property of berberine[J]. Redox Biol, 2023, 62: 102704. doi: 10.1016/j.redox.2023.102704

    [25]

    Chi ZX, Chen S, Xu T, et al. Histone deacetylase 3 couples mitochondria to drive IL-1β-dependent inflammation by configuring fatty acid oxidation[J]. Mol Cell, 2020, 80(1): 43-58. e7.

    [26]

    Bricambert J, Miranda J, Benhamed F, et al. Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice[J]. J Clin Invest, 2010, 120(12): 4316-4331. doi: 10.1172/JCI41624

    [27]

    Hou TY, Tian Y, Cao ZY, et al. Cytoplasmic SIRT6-mediated ACSL5 deacetylation impedes nonalcoholic fatty liver disease by facilitating hepatic fatty acid oxidation[J]. Mol Cell, 2022, 82(21): 4099-4115. e9.

    [28]

    Wei YD, Tian C, Zhao YX, et al. MRG15 orchestrates rhythmic epigenomic remodelling and controls hepatic lipid metabolism[J]. Nat Metab, 2020, 2(5): 447-460. doi: 10.1038/s42255-020-0203-z

    [29]

    Tian C, Min XW, Zhao YX, et al. MRG15 aggravates non-alcoholic steatohepatitis progression by regulating the mitochondrial proteolytic degradation of TUFM[J]. J Hepatol, 2022, 77(6): 1491-1503. doi: 10.1016/j.jhep.2022.07.017

    [30]

    Lin RT, Tao R, Gao X, et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth[J]. Mol Cell, 2013, 51(4): 506-518. doi: 10.1016/j.molcel.2013.07.002

    [31]

    Guo L, Guo YY, Li BY, et al. Enhanced acetylation of ATP-citrate lyase promotes the progression of nonalcoholic fatty liver disease[J]. J Biol Chem, 2019, 294(31): 11805-11816. doi: 10.1074/jbc.RA119.008708

    [32]

    Li XZ, Ding KX, Li XY, et al. Deficiency of WTAP in hepatocytes induces lipoatrophy and non-alcoholic steatohepatitis (NASH)[J]. Nat Commun, 2022, 13(1): 4549. doi: 10.1038/s41467-022-32163-w

    [33]

    Mikula M, Majewska A, Ledwon JK, et al. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver[J]. Int J Mol Med, 2014, 34(6): 1647-1654. doi: 10.3892/ijmm.2014.1958

    [34]

    Ozden O, Park SH, Kim HS, et al. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress[J]. Aging, 2011, 3(2): 102-107. doi: 10.18632/aging.100291

    [35]

    Zhang JL, Zhao YJ, Wang SH, et al. CREBH alleviates mitochondrial oxidative stress through SIRT3 mediating deacetylation of MnSOD and suppression of Nlrp3 inflammasome in NASH[J]. Free Radic Biol Med, 2022, 190: 28-41. doi: 10.1016/j.freeradbiomed.2022.07.018

    [36]

    Yang XD, Chen Z, Ye L, et al. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF-κB p65 pathway[J]. Pharm Biol, 2021, 59(1): 922-932.

    [37]

    Sarkar A, Mitra P, Lahiri A, et al. Butyrate limits inflammatory macrophage niche in NASH[J]. Cell Death Dis, 2023, 14(5): 332. doi: 10.1038/s41419-023-05853-6

    [38]

    Ha TS, Shin TG, Jo IJ, et al. Lactate clearance and mortality in septic patients with hepatic dysfunction[J]. Am J Emerg Med, 2016, 34(6): 1011-1015. doi: 10.1016/j.ajem.2016.02.053

    [39]

    Wang TX, Chen K, Yao WL, et al. Acetylation of lactate dehydrogenase B drives NAFLD progression by impairing lactate clearance[J]. J Hepatol, 2021, 74(5): 1038-1052. doi: 10.1016/j.jhep.2020.11.028

    [40]

    Zhang LQ, Zhang ZG, Li CB, et al. S100A11 promotes liver steatosis via FOXO1-mediated autophagy and lipogenesis[J]. Cell Mol Gastroenterol Hepatol, 2021, 11(3): 697-724. doi: 10.1016/j.jcmgh.2020.10.006

    [41]

    Ren HH, Hu FQ, Wang D, et al. Sirtuin 2 prevents liver steatosis and metabolic disorders by deacetylation of hepatocyte nuclear factor 4α[J]. Hepatology, 2021, 74(2): 723-740. doi: 10.1002/hep.31773

    [42]

    Chen MT, Hui SC, Lang HD, et al. SIRT3 deficiency promotes high-fat diet-induced nonalcoholic fatty liver disease in correlation with impaired intestinal permeability through gut microbial dysbiosis[J]. Mol Nutr Food Res, 2019, 63(4): e1800612. doi: 10.1002/mnfr.201800612

    [43]

    Li Z, Zhang HX, Li Y, et al. Phytotherapy using blueberry leaf polyphenols to alleviate non-alcoholic fatty liver disease through improving mitochondrial function and oxidative defense[J]. Phytomedicine, 2020, 69: 153209. doi: 10.1016/j.phymed.2020.153209

    [44]

    Zhong XL, Huang MH, Kim HG, et al. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2): 341-364. doi: 10.1016/j.jcmgh.2020.04.005

    [45]

    Witayavanitkul N, Werawatganon D, Chayanupatkul M, et al. Genistein and exercise treatment reduced NASH related HDAC3, IL-13 and MMP-12 expressions in ovariectomized rats fed with high fat high fructose diet[J]. J Tradit Complement Med, 2021, 11(6): 503-512. doi: 10.1016/j.jtcme.2021.04.004

    [46]

    Lee J, Song JH, Chung MY, et al. 3, 4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity[J]. Acta Pharmacol Sin, 2021, 42(9): 1449-1460. doi: 10.1038/s41401-020-00571-7

    [47]

    Chung MY, Song JH, Lee J, et al. Tannic acid, a novel histone acetyltransferase inhibitor, prevents non-alcoholic fatty liver disease both in vivo and in vitro model[J]. Mol Metab, 2019, 19: 34-48. doi: 10.1016/j.molmet.2018.11.001

    [48]

    Nie KX, Gao Y, Chen S, et al. Diosgenin attenuates non-alcoholic fatty liver disease in type 2 diabetes through regulating SIRT6-related fatty acid uptake[J]. Phytomedicine, 2023, 111: 154661. doi: 10.1016/j.phymed.2023.154661

    [49]

    Zhang X, Jiang ZH, Jin XL, et al. Efficacy of traditional Chinese medicine combined with silibinin on nonalcoholic fatty liver disease: a meta-analysis and systematic review[J]. Medicine, 2024, 103(5): e37052. doi: 10.1097/MD.0000000000037052

    [50]

    He X, Li YB, Deng XY, et al. Integrative evidence construction for resveratrol treatment of nonalcoholic fatty liver disease: preclinical and clinical meta-analyses[J]. Front Pharmacol, 2023, 14: 1230783. doi: 10.3389/fphar.2023.1230783

    [51]

    He YH, Wang H, Lin SL, et al. Advanced effect of curcumin and resveratrol on mitigating hepatic steatosis in metabolic associated fatty liver disease via the PI3K/AKT/mTOR and HIF-1/VEGF cascade[J]. Biomedecine Pharmacother, 2023, 165: 115279. doi: 10.1016/j.biopha.2023.115279

图(3)  /  表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  25
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-29
  • 刊出日期:  2025-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭