Mitofusin 2: an emerging drug target
-
摘要:
线粒体融合蛋白 2(mitofusin 2,MFN2)定位于线粒体外膜,是参与线粒体融合以及维持线粒体形态的关键因子。由于MFN2在细胞内的功能多样性,其参与多种疾病进展,尤其在2型腓骨肌萎缩症中,以MFN2为靶点的药物研发正在成为热点。本文对MFN2的功能以及在多种疾病中的作用进行了回顾,并概述了针对MFN2的药物开发现现状,总结了目前进入临床前研究阶段的潜在药物分子,以期为MFN2作为靶点的药物研究以及疗法开发提供参考。
Abstract:Mitofusin 2 (MFN2) residing on the outer mitochondrial membrane is a pivotal factor participating in mitochondrial fusion and maintaining mitochondrial morphology. Due to its multifaceted cellular functions, MFN2 is implicated in the pathogenesis of diverse maladies, notably type 2 Charcot-Marie-Tooth disease, which has catalyzed a surge in pharmaceutical endeavors directed towards MFN2. This article reviews the function of MFN2 and its role in a variety of diseases, outlines the current status of drug discovery against MFN2, and summarizes potential drug molecules currently in preclinical research, aiming to provide some reference for the research and development of drugs and therapies targeting MFN2.
-
Keywords:
- mitofusin 2 /
- function /
- disease mechanism /
- drug target /
- nervous system disease /
- cardiovascular disease
-
血管衰老是导致心血管疾病病死率较高的一个重要因素[1−2]。血管内皮细胞是血管壁的重要组成部分,与血液成分直接接触,易受血流中异常成分等因素的影响,诱发氧化应激,导致血管内皮细胞衰老。因此,内皮细胞衰老是血管衰老发展过程的关键步骤[3−4]。研究发现,过氧化氢(H2O2)作为一种强氧化剂,极易透过细胞膜扩散,对人脐静脉血管内皮细胞(human umbilical vein endothelial cells, HUVECs)造成氧化损伤[5−6],从而导致血管衰老。因此,采用抗氧化剂清除血管内皮细胞中的H2O2是改善血管衰老的有效途径。
黄芩苷(baicalin, BAI)是一种从唇形科植物黄芩(Scutellaria baicalensis Georgi)的干根中提取的黄酮类化合物,具有抗炎[7]、抗氧化[8]、抗病毒[9]和抗肿瘤[10]等多种生物活性。Zeng等[11]研究表明,黄芩苷对氧自由基具有良好的清除活性。Wang等[12]研究表明,黄芩苷能够抑制细胞中活性氧(reactive oxygen species, ROS)和丙二醛(malondialdehyde, MDA)的产生、促进超氧化物歧化酶的生成。然而黄芩苷溶解性差、半衰期短、生物利用度低[13],导致用药剂量大,在临床上需频繁给药,患者的依从性差,同时无法精确控制剂量,血液中容易出现药物浓度的峰谷现象,使得黄芩苷的不良反应增加。因此有必要进行剂型改造,以开发出疗效更佳的黄芩苷制剂。
R-(+)-硫辛酸(lipoic acid,LA)是硫辛酸合成酶在线粒体内合成的一类B族维生素,具有“万能抗氧化剂”的美誉。硫辛酸与其还原态化合物“二氢硫辛酸(DHLA)”都能有效消除数种不同的自由基,起到稳定血糖、增强肝功能、缓解疲劳以及抗衰老等功效[14]。在前期成功利用LA构建各类交联硫辛酸纳米载体(包括纳米囊泡和纳米胶囊)的工作基础上[15−16],本研究采用交联硫辛酸纳米胶囊负载具有优异抗氧化活性的黄芩苷,不仅解决了黄芩苷溶解性差、半衰期短、生物利用度低等问题,而且该纳米载体具有很好的生物相容性,在完成药物递送后,其降解产物二氢硫辛酸不仅不会损伤正常细胞,还能与黄芩苷联合发挥抗氧化功效。这一黄芩苷纳米药物的开发希望能够有效解决过氧化氢诱导的血管内皮细胞衰老问题,更好地抵抗血管衰老相关疾病。
1. 材 料
1.1 药品与试剂
黄芩苷(纯度:99%,陕西帕尼尔生物科技有限公司);R-(+)-硫辛酸(纯度:98%,贵阳沃尔森生物技术有限公司);30% H2O2(天津市科密欧化学试剂有限公司);MTT、细胞衰老β-半乳糖苷酶染色试剂盒(上海碧云天生物技术有限公司); RPMI 1640培养基(珀金埃尔默股份有限公司);胎牛血清、青链霉素混合液(100×)双抗(深圳市维森特科技有限公司);胰酶(上海源培生物科技股份有限公司);2′, 7′-二氯荧光素二乙酸酯(DCFH-DA,上海博世生物科技有限公司);脂质过氧化MDA检测试剂盒(北京索莱宝科技有限公司);细胞周期与细胞凋亡检测试剂盒(上海翌圣生物科技股份有限公司);BL521A型BCA蛋白定量试剂盒(上海Biosharp公司);尼罗红荧光染料(安徽泽升科技有限公司);Hoechst 33342(上海迈瑞尔化学技术有限公司);二甲基亚砜(DMSO,阿拉丁上海生物科技有限公司)。
1.2 仪 器
ME104/02型电子天平(上海梅特勒-托利多仪器有限公司); UV-2700型紫外-可见分光光度计(日本岛津有限公司); XDS-2B型倒置显微镜(日本尼康公司);倒置荧光显微镜(成都锦世昌祥科技有限公司);Variokanlux型多功能酶标仪(美国Thermo Fisher Scientific公司);SN267216酶联免疫检测仪(美国伯腾仪器有限公司); SHZ-88型流式细胞仪(艾森生物杭州有限公司);FS-1200N细胞破碎仪(上海生析超声仪器有限公司)。
1.3 细 胞
人脐静脉内皮细胞株(HUVECs,CRL-1730)来自美国模式培养物集存库(American Type Culture Collection,ATCC)。
2. 方法与结果
2.1 黄芩苷纳米药物的制备及表征
2.1.1 黄芩苷纳米药物的制备
(1)硫辛酸钠(LA-Na)的制备 精确称取LA(207.0 mg, 1 mmol)加至反渗透纯水(RO水)5.0 mL中振荡至溶解。将NaOH溶液(40.0 mg, 1 mmol)1 mL缓慢滴加到硫辛酸水溶液5.0 mL中,直至硫辛酸全部溶解。再用微量稀盐酸(1 mol/L)进行回滴,直至接近中性,且有明显的丁达尔现象。将所得溶液放置−20 ℃冰箱预冻,最后用冷冻干燥机冻干,得到LA-Na粉末。
(2)负载黄芩苷的交联硫辛酸纳米胶囊(BAI@cLANCs)的制备 精确称取LA-Na 45.5 mg于RO水5 mL振荡溶解,滴加微量稀盐酸(1 mol/L)至出现丁达尔现象,即形成空白纳米粒子(cLANCs)。配制二氯甲烷-乙酸乙酯(1∶1)溶液,取其125 μL,边超声边滴加至cLANCs溶液中,超声30 min。紫外光照2.5 h、透析24 h。在40 ℃的超声波清洗器中缓慢滴加黄芩苷粉末3.75 mg,超声30 min。离心(
3000 r/min,5 min)分离未包载到纳米粒子中的黄芩苷,上清液即为BAI@cLANCs溶液。溶液在激光笔照射下呈现出良好的丁达尔效应(图1-A),冻干可得BAI@cLANCs粉末。2.1.2 黄芩苷纳米药物的表征
(1)紫外吸收法验证黄芩苷的成功负载 通过紫外-可见分光光度计在200~800 nm范围内检测BAI@cLANCs溶液中BAI的紫外吸收,并与cLANCs和BAI标准溶液进行对比,结果如图1-B所示:cLANCs在200~800 nm的波长范围内未见吸收,而BAI和BAI@cLANCs在250~350 nm范围内吸收峰趋势相同且在276、317 nm两处均有吸收峰,由此证明黄芩苷已成功负载。
( 2)粒径测量 取透析之后得到的cLANCs溶液和BAI@cLANCs溶液通过纳米激光粒度分布仪测量。cLANCs的粒径为72 nm,PDI为0.286;BAI@cLANCs的粒径为74 nm,PDI为0.297(图2-A,B)。负载BAI前后纳米粒子大小无明显变化,且分散性良好。
(3)稀释稳定性评估 取BAI@cLANCs溶液对半稀释,一直稀释到硫辛酸纳米粒子的临界聚集浓度(0.02 mg/mL)以下,即第1次取RO水1.0 mL, 9.1 mg/mL BAI@cLANCs溶液1.0 mL,依次对半稀释。分别检测9.1、4.55、2.28、1.14、0.57、0.28、0.14、0.07、0.04、0.02、0.01 mg/mL下的粒径。结果显示,BAI@cLANCs的粒径无较大波动(图2-C),表明BAI@cLANCs具有良好的稀释稳定性。
(4)血清稳定性评估 取胎牛血清(FBS)300 μL加至BAI@cLANCs溶液
2700 μL中,用移液枪混匀,置37℃水浴锅中孵育,测定0、3、6、9、12 h的粒径。结果显示,BAI@cLANCs与血清孵育12 h内粒径无明显变化(图2-D),表明BAI@cLANCs具有良好的血清稳定性。2.2 细胞培养及分组
于5% CO2、37℃的培养箱中,利用RPMI 1640完全培养基(89%基础培养基 + 10%胎牛血清 + 1%双抗)对HUVECs进行培育。当细胞汇合度达70%~80%时,用含EDTA的胰酶将细胞消化分散,以1∶3的比例进行传代。以未经任何处理的细胞作为对照组,经H2O2诱导的衰老细胞为模型组,其余各组H2O2 H2O2诱导后分别加入BAI、cLANCs、BAI + cLANCs、BAI@cLANCs。其中,BAI组、cLANCs组、BAI + cLANCs组的给药量与BAI@cLANCs组中黄芩苷和空白载体的含量一致。
2.3 MTT法检测细胞活性
利用RPMI 1640完全培养基配制单细胞悬液,以每孔1×103~1×104个细胞的密度接种到96孔板中,每孔体积100 μL。于37 ℃培养箱中孵育24 h后,进行给药处理,再孵育24 h后,每孔加入MTT溶液(5 mg/mL)20 μL,继续孵育4 h,小心吸弃孔内培养上清液,每孔加DMSO 150 μL,在脱色摇床上振荡10 min。以空白对照组调零,用酶联免疫检测仪于490 nm处测定各孔吸收度(A)。以未做任何处理的细胞作为空白对照组,其细胞活力为100%。按照下列公式计算细胞增殖活性:细胞存活率(%) = (Atest−Ablank)/(Acontrol−Ablank) × 100。
设置BAI@cLANCs(以BAI的浓度进行定量)的浓度为0、2.8、5.6、11、22、34、45、67、90、112 mmol/L,计算各浓度的细胞存活率。结果如图3-A所示,BAI@cLANCs在上述浓度范围内,对HUVECs的生长无显著影响,表明BAI@cLANCs在该浓度范围内具有较高的安全性。
设置H2O2浓度为0、150、200、300、500、600、700、800、900、
1000 μmol/L,通过MTT法计算各浓度的细胞存活率,结果如图3-B,H2O2呈现剂量依赖的细胞毒性,考虑到在不产生明显细胞毒性的情况下进行细胞衰老诱导,初步确定以200 μmol/L的H2O2诱导HUVECs衰老。2.4 构建HUVECs衰老模型
用含EDTA的胰酶将培养瓶中的HUVECs细胞消化分散下来,离心(
1000 r/min,5min),弃上清液,加入含有H2O2(200 μmol/L)的PBS溶液重悬细胞,在含5% CO2、37℃的培养箱中孵育10、15、20、25、30、45 min。在H2O2处理期间,每5 分钟轻轻上下翻转EP管1次,H2O2处理完成后,离心弃上清液,加PBS 1 mL清洗,再次离心。最后,取完全培养基1 mL将细胞团块混匀制成细胞悬液,再接种到培养板里。此方法参考文献[17],结合本研究的实验探究,初步确定H2O2处理25 min后的效果较佳。用200 μmol/L H2O2处理25 min建立衰老细胞,以正常细胞作为对照,各设置3个平行样,分别接种于12孔细胞培养板中(每孔1 × 104 个细胞),共培养3 d 后,采用Hoechst
33342 染色法、SA-β-gal 染色法进行染色。染色完成后分别于倒置荧光显微镜、普通光学显微镜下进行成像,以检测细胞衰老情况。SA-β-gal染色后的细胞,每孔取7个随机视野500个细胞计数,SA-β-gal阳性细胞占细胞总数的百分比,即为细胞衰老比例。由图4可见,经200 μmol/L的H2O2诱导25 min后的细胞核形态变得不完整,呈现出变大、变平、对半裂开等现象,且SA-β-gal法染色后,蓝绿色细胞数量明显增加,细胞衰老比例也明显升高(P<0.01)。上述结果说明HUVECs衰老模型成功建立。Figure 4. Assessment of HUVECs cellular senescence induced by H2O2A:Nucleus staining photographs of untreated HUVECs with Hoechst 33342(Scar bar: 25 μm);B:Nucleus staining photographs of H2O2 treated HUVECs with Hoechst 33342. Red arrows are the nuclei which are significantly enlarged and split in half(Scar bar:25 μm);C: SA-β-gal staining photographs of untreated HUVECs (×100);D: SA-β-gal staining photographs of H2O2 treated HUVECs (×100);E:Cell senescence ratios of untreated HUVECs and H2O2 treated HUVECs after SA-β-gal staining ($ \bar{x}\pm s $, n = 7,**P<0.01)2.5 体外评估BAI@cLANCs的细胞摄取情况
采用尼罗红(Nile Red, NR)荧光染料标记BAI@cLANCs。在BAI@cLANCs水溶液中加入含NR的DMSO溶液,超声后避光透析2 h,即得。采用“2.4”项下方法构建衰老细胞模型,将细胞接种至12孔板中(每孔1 × 105 个细胞)。孵育24 h后,用NR标记的BAI@cLANCs[c(NR) = 200 ng/mL,c(BAI) = 22 mmol/L,c(cLANCs) = 170 mmol/L]的新鲜培养基替换旧培养基,并分别孵育1、3、6 h后用Hoechst 33342进行细胞核染色,最后于倒置荧光显微镜下进行定性荧光成像。采用上述孵育方法,实验同时设对照组、模型组、NR组(干预时间为6 h),经过相同处理之后用流式细胞仪进行摄取定量分析。
荧光成像结果表明,在相同干预条件下,随着时间的增加,BAI@cLANCs组红色荧光增亮且数目增多,处理6 h组细胞摄取效果最好。结果见图5。根据流式分析数据,未作任何干预的空白组和模型组,细胞摄取量无明显差异; NR组与BAI@cLANCs 6 h组相比,摄取量较低(P<0.05);随着时间的延长,衰老细胞对BAI@cLANCs的摄取量逐渐增加,流式结果与荧光定性结果相符合。细胞摄取结果说明,以cLANCs作为药物递送载体,BAI可被HUVECs有效摄取。
Figure 5. Qualitative and quantitative of cell uptake of BAI@cLANCs evaluated in vitro ($ \bar{x} \pm s$, n = 3)A:Fluorescence images of model cells treated with Nile Red(NR) &BAI@cLANCs for 1,3,and 6 h(Scar bar:25 μm);B:Mean fluorescence intensity of H2O2 induced HUVECs incubated with NR&BAI@cLANCs for 1, 3, and 6 h(****P<0.0001 );C:Differences in fluorescence intensity, the untreated treated HUVECs are used as control, and H2O2 induced HUVECs are used as model(M)2.6 SA-β-gal 染色法观察细胞衰老比例
以“2.4”项下方法构建细胞衰老模型,接种于12孔板中(每孔1 × 104 个细胞),孵育24 h。按照实验分组将衰老模型细胞分为5组:模型组、BAI@cLANCs组、BAI+cLANCs组、BAI组、cLANCs组。4个给药组的药物浓度均用RPMI
1640 基础培养基进行稀释,BAI组c(BAI)为4.50、11、22 mmol/L,cLANCs组c(cLANCs)为34、85、170 mmol/L,BAI@cLANCs、BAI+cLANCs药物浓度均以BAI组和cLANCs组进行定量,同时将模型组的完全培养基替换为基础培养基,共同孵育1 d,使用SA-β-gal染色,测定细胞衰老比例。结果如图6所示,各给药组随着药物浓度的增加,与之相对应的衰老阳性细胞数逐渐减少,且与衰老模型组相比,4个给药组的衰老细胞阳性率均降低,尤其是BAI@cLANCs 22 mmol/L组更显著,说明BAI@cLANCs[c(BAI)= 22 mmol/L]抵抗过氧化氢诱导的血管内皮细胞衰老效果最佳。
2.7 DCFH-DA染色法检测细胞ROS水平
按“2.4”项下方法构建HUVECs细胞衰老模型,将细胞接种至12孔板中(每孔1 × 105 个细胞),孵育24 h。按照上述实验分组进行药物处理6 h 后,用DCFH-DA荧光探针避光孵育30 min,再使用Hoechst
33342 进行细胞核染色,于倒置荧光显微镜下成像定性分析,其中药物浓度设置如下:BAI组c(BAI)=22 mmol/L,cLANCs组c(cLANCs)=170 mmol/L,BAI@cLANCs、BAI+cLANCs药物浓度均以BAI组和cLANCs组一致。为了定量ROS产生情况,建立衰老模型,以每孔1×104个细胞接种到96孔板,未处理的细胞作正常对照组,共同培养24 h,按上述实验分组进行药物处理,6 h后用DCFH-DA荧光探针避光孵育30 min,PBS清洗2~3遍后,使用多功能酶标仪进行ROS含量检测(激发波长488 nm,吸收波长525 nm)。由图7-A可见,DCFH-DA荧光探针被ROS氧化后于荧光显微镜下呈绿色荧光,与对照组相比,模型组的绿色荧光更为明显;与模型组相比,4个给药组的绿色荧光均减弱,荧光强度由大到小依次为: BAI组、BAI + cLANCs组、cLANCs组、BAI@cLANCs组。通过多功能酶标仪测得各组细胞内荧光探针的吸收度,以吸收度折算ROS含量。如图7-B所示,与对照组相比,模型组的ROS含量显著增加(P<
0.0001 ),差异具有统计学意义,与模型组相比,BAI@cLANCs 组ROS含量减少(P<0.01),差异具有统计学意义,且其余3个给药组的ROS含量均有降低。整体来说,多功能酶标仪检测的ROS含量与荧光成像结果相一致。cLANCs作为药物递送载体,促进BAI在胞内富集,联合清除胞内ROS含量,达到抵抗细胞衰老的目的。2.8 MDA含量检测
采用“2.4”项下方法构建细胞衰老模型,于培养瓶中培养24 h。按上述实验分组进行药物处理24 h,药物浓度设置同“2.7”项。按照试剂盒说明书,进行MDA含量检测。
如图7-C所示,经H2O2诱导的衰老细胞,与对照组比较,MDA含量显著增加;与模型组相比,药物处理组MDA含量均减少,其中BAI@cLANCs组下降较为明显。该结果表明,经H2O2诱导后细胞脂质过氧化水平显著升高(P<0.05),而BAI@cLANCs相比于其他治疗组降低细胞脂质过氧化水平较为明显。
2.9 PI单染法检测细胞周期
按照“2.4”项下方法构建细胞衰老模型,将细胞接种至12孔板中(每孔1 × 105 个细胞),孵育24 h。按上述实验分组进行药物处理(药物浓度设置同“2.7”项)24 h后,0.25%胰酶消化,用预冷的PBS洗2次,加入预冷的70%乙醇5 mL固定过夜,PBS洗2次后,加入PI 0.5 mL避光反应30 min后进行流式检测。统计分析G0/G1期、S期、G2/M期细胞占细胞总数的百分比。
结果显示:与对照组相比,模型组的G0/G1期细胞比例显著降低(P<
0.0001 ),G2/M期细胞比例降低,S期细胞比例显著增高(P<0.0001 ),表明H2O2诱导HUVECs发生了明显损伤;与模型组相比, BAI@cLANCs组的G0/G1期细胞比例增高,G2/M期细胞比例显著增高(P<0.05),S期细胞比例显著降低(P<0.0001 ),并且相应周期的细胞占比与对照组接近,表明其具有很好的抗氧化效果;相比之下,其余治疗组与模型组相比,G0/G1期细胞比例增高,S期细胞和G2/M期细胞比例降低,呈现出较为一致的作用趋势,也表现出了一定程度的抗氧化作用,结果详见表1。Table 1. Cell cycle distribution of model cells induced by BAI@cLANCs, BAI + cLANCs, BAI, and cLANCs for 24 h.Statistical methods: one-way analysis of variance($ \bar{x} \pm s$, n = 3)Group Percentage of cells in each phase of the cell cycle G0/G1 phase S phase G2/M phase Control 62.75 ± 1.11 16.98 ± 1.25 13.59 ± 0.74 Model 39.41 ± 0.95**** 51.61 ± 0.85**** 7.43 ± 2.02 BAI@cLANCs 46.08 ± 3.99 27.80 ± 2.90#### 18.04 ± 1.27# BAI+cLANCs 56.62 ± 10.58### 28.34 ± 4.21#### 13.10 ± 6.02 BAI 55.04 ± 2.16### 37.60 ± 2.26## 6.04 ± 1.14 cLANCs 48.08 ± 3.41 39.75 ± 2.14# 9.75 ± 0.94 ****P< 0.0001 vs control group; #P<0.05, ##P<0.01, ###P<0.001, ####P<0.0001 vs model group3. 结论与讨论
本研究通过体外实验,多角度评估BAI@cLANCs对H2O2诱导的HUVECs衰老的影响,评估其应用潜力。细胞毒性实验数据显示,BAI@cLANCs对正常HUVECs的生长无显著的抑制作用。BAI@cLANCs的细胞摄取定性及定量结果表明,cLANCs可提高药物递送效率,促进BAI@cLANCs在衰老血管内皮细胞内的富集,入胞后,通过黄芩苷和cLANCs的降解产物二氢硫辛酸的联合抗氧化作用清除衰老HUVECs中的ROS。为了评估BAI@cLANCs的抗衰老效果,本研究采用了SA-β-gal染色法、ROS荧光成像和多功能酶标仪定量法、脂质氧化检测、细胞周期和细胞凋亡检测发现,经H2O2诱导后细胞衰老比例、ROS、MDA含量升高,药物处理后细胞衰老比例、细胞内ROS、MDA的含量均有所下降;即H2O2处理后的细胞内产生了大量ROS,且细胞脂质过氧化水平升高,而BAI@cLANCs相比于其他治疗组能更有效地清除细胞内ROS、降低细胞脂质过氧化水平。细胞周期分析结果显示,经H2O2诱导后细胞多阻滞于S期,增殖速度降低。BAI@cLANCs的干预对衰老细胞具有一定的修复功能,细胞完成了DNA的合成,进入到G2/M期,其分裂增殖速度较模型组快。相比之下,BAI + cLANCs组、BAI组、cLANCs组细胞增殖速度较BAI@cLANCs组慢。实验结果证明,BAI@cLANCs具有更优的抗氧化功效,能有效延缓血管内皮细胞衰老,为黄芩苷纳米制剂进行抗衰老相关研究提供了很好的剂型参考。
-
表 1 线粒体融合蛋白2(MFN2)的功能及其发挥功能的机制
功 能 机 制 细 胞 参考文献 内质网-线粒体
接触内质网膜上的MFN2剪切体ERMIT2与线粒体上的MFNs相互作用形成同源或异源二聚体以介导ER-线粒体接触 哺乳动物细胞 [25] 透明相关形式 1(DIAPH1)直接与MFN2相互作用,缩短线粒体-肌浆网/内质网距离,从而增强细胞中线粒体-内质网的接触 心肌细胞、内皮细胞、巨噬细胞 [26] 线粒体分裂蛋白1(FIS1)发生去SUMO化,并与MFN2和电压依赖阴离子通道1(VDAC1)共组装,以增强MFN2的寡聚作用使其膜拴系活性增强 肺内皮细胞 [27] 内质网上肌浆网/内质网Ca2+ ATP酶 2(SERCA2)与MFN2相互作用,促进线粒体有效代谢所需的钙内流,从而增强线粒体-内质网的联系 CD8+ T 细胞 [28] 细胞增殖 MFN2被哺乳动物雷帕霉素靶蛋白(mTOR)磷酸化,并与糖酵解的关键限速酶丙酮酸激酶同工酶2(PKM2)相互作用,并减弱肿瘤细胞糖酵解,抑制肿瘤细胞增殖 肿瘤细胞 [29] MFN2敲低削弱了线粒体融合,以减弱氧化磷酸化与线粒体偶联效率,抑制细胞增殖 小鼠成纤维细胞 [30] MFN2敲低损害自噬,抑制线粒体耗氧率和细胞糖酵解,减少ATP产生,从而抑制细胞
增殖血管平滑肌细胞 [31] 能量代谢 MFN2敲除导致葡萄糖耐受不良以及胰岛素信号传导的损害 肌肉细胞、肝脏细胞、下丘脑神经元
细胞[32−33] MFN2敲除显著改善心脏代谢重新编程,使抑制的氧化磷酸化转变为糖酵解,并增加ATP产生 心脏细胞 [34] 内质网应激 在肝脏中MFN2敲除会导致内质网应激,表现为真核翻译起始因子2α激酶(eIF2α)、C/EBP同源蛋白(CHOP)和肌醇需求酶1(IRE1)表达升高;在MFN2缺陷的骨骼肌中还检测到激活转录因子6(ATF6)与重链结合蛋白(BIP)的丰度增加 肝脏细胞、骨骼肌
细胞[35] MFN2敲除细胞会表现出PERK的持续激活,MFN2作为PERK的上游激活剂与PERK相互作用,参与内质网应激 小鼠成纤维细胞 [36] 细胞死亡 MFN2过表达可以通过增强MAM,介导Ca2+从内质网流入线粒体而诱发凋亡 CD8+ T 细胞 [28] MFN2过表达可以通过缓解线粒体功能障碍,并抑制酰基辅酶 A 合成酶长链家族成员 4(acyl-CoA synthetase long chain family member 4, ACSL 4)的线粒体易位,以减弱铁死亡 心脏细胞 [37] 髓系细胞MFN2特异性敲除能够明显增加骨髓来源巨噬细胞对胆汁酸诱导焦亡的抗性,并且b-鼠胆酸能够以MFN2依赖的方式促进伤寒沙门氏菌触发的细胞焦亡 巨噬细胞 [7] 免疫 MFN2与NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3, NLRP3)炎症小体作用促进IL-1β分泌 巨噬细胞 [38] 髓系MFN2敲除促进巨噬细胞中结核分枝杆菌的生长;并且在李斯特菌、结核分枝杆菌感染以及脂多糖诱导的感染性休克期间损害免疫应答 巨噬细胞 [39] 浸润巨噬细胞的MFN2依赖性线粒体融合可以增强对病原体入侵的先天免疫 巨噬细胞 [7] 表 2 MFN2激动剂
名 称 结 构 化学名 参考文献 Chimera B/A1 1-(2-((4-cyclopropyl-5-phenylcyclopenta-1,3-dien-1-yl)thio)ethyl)-3-(2-methylcyclohexyl)urea [24] Chimera C 1-(3-(5-cyclopropyl-4-phenyl-4H-1,2,4-triazol-3-yl)propyl)-
3-(2-methylcyclohexyl)urea[24] trans-MiM 111 N-((1S,4S)-4-hydroxycyclohexyl)-6-phenylhexanamide [61] CRP1-B (1R,2R)-N-((1S,4S)-4-hydroxycyclohexyl)-2-(3-phenylpropyl)cyclopropane-1-carboxamide [63] MASM7 2-(2-((5-cyclopropyl-4-phenyl-4H-1,2,4-triazol-3-yl)thio)acetamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxamide [64] -
[1] Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism[J]. Mol Cell, 2016, 61(5): 683-694. doi: 10.1016/j.molcel.2016.02.022
[2] Filadi R, Pendin D, Pizzo P. Mitofusin 2: from functions to disease[J]. Cell Death Dis, 2018, 9(3): 330. doi: 10.1038/s41419-017-0023-6
[3] Record CJ, Pipis M, Skorupinska M, et al. Whole genome sequencing increases the diagnostic rate in Charcot-Marie-Tooth disease[J]. Brain, 2024, 147(9): 3144-3156. doi: 10.1093/brain/awae064
[4] Mancini G, Pirruccio K, Yang XY, et al. Mitofusin 2 in mature adipocytes controls adiposity and body weight[J]. Cell Rep, 2019, 27(2): 648. doi: 10.1016/j.celrep.2019.03.065
[5] Tang YJ, Jia YT, Fan LW, et al. MFN2 prevents neointimal hyperplasia in vein grafts via destabilizing PFK1[J]. Circ Res, 2022, 130(11): e26-e43.
[6] Hernández-Alvarez MI, Sebastián D, Vives S, et al. Deficient endoplasmic reticulum-mitochondrial phosphatidylserine transfer causes liver disease[J]. Cell, 2019, 177(4): 881-895. e17.
[7] Che Y, Xu WF, Ding CJ, et al. Bile acids target mitofusin 2 to differentially regulate innate immunity in physiological versus cholestatic conditions[J]. Cell Rep, 2023, 42(1): 112011. doi: 10.1016/j.celrep.2023.112011
[8] Ramaiah P, Patra I, Abbas A, et al. Mitofusin-2 in cancer: friend or foe[J]? Arch Biochem Biophys, 2022, 730: 109395. doi: 10.1016/j.abb.2022.109395
[9] Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease[J]. Biol Rev Camb Philos Soc, 2018, 93(2): 933-949. doi: 10.1111/brv.12378
[10] Yuan XW, Nan YM. Research progress of structure, function and mechanism of action of mitofusin 2 in liver diseases[J]. Chin Gen Pract (中国全科医学), 2023, 26(30): 3841-3846. [11] Xu X, Wang XN, Chen QH, et al. Sp1 promotes tumour progression by remodelling the mitochondrial network in cervical cancer[J]. J Transl Med, 2023, 21(1): 307. doi: 10.1186/s12967-023-04141-3
[12] Zeng KW, Wang JK, Wang LC, et al. Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity[J]. Signal Transduct Target Ther, 2021, 6(1): 71. doi: 10.1038/s41392-020-00447-6
[13] Fang XD, He JK, Chen YX, et al. MiR-449a downregulation alleviates the progression of renal interstitial fibrosis by mediating the KLF4/MFN2 axis[J]. Int Urol Nephrol, 2023, 55(7): 1837-1846. doi: 10.1007/s11255-023-03503-6
[14] Bucha S, Mukhopadhyay D, Bhattacharyya NP. E2F1 activates MFN2 expression by binding to the promoter and decreases mitochondrial fission and mitophagy in HeLa cells[J]. FEBS J, 2019, 286(22): 4525-4541. doi: 10.1111/febs.14980
[15] Barker SJ, Raju RM, Milman NEP, et al. MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration[J]. Sci Transl Med, 2021, 13(618): eabd7695. doi: 10.1126/scitranslmed.abd7695
[16] Ding MG, Shi R, Fu F, et al. Paeonol protects against doxorubicin-induced cardiotoxicity by promoting Mfn2-mediated mitochondrial fusion through activating the PKCε-Stat3 pathway[J]. J Adv Res, 2023, 47: 151-162. doi: 10.1016/j.jare.2022.07.002
[17] Zhang K, Zhao HF, Sheng YR, et al. Zeb1 sustains hematopoietic stem cell functions by suppressing mitofusin-2-mediated mitochondrial fusion[J]. Cell Death Dis, 2022, 13(8): 735. doi: 10.1038/s41419-022-05194-w
[18] Xu L, Hao HY, Hao YJ, et al. Aberrant MFN2 transcription facilitates homocysteine-induced VSMCs proliferation via the increased binding of c-Myc to DNMT1 in atherosclerosis[J]. J Cell Mol Med, 2019, 23(7): 4611-4626. doi: 10.1111/jcmm.14341
[19] Ding MG, Shi R, Cheng SL, et al. Mfn2-mediated mitochondrial fusion alleviates doxorubicin-induced cardiotoxicity with enhancing its anticancer activity through metabolic switch[J]. Redox Biol, 2022, 52: 102311. doi: 10.1016/j.redox.2022.102311
[20] Chen Y, Dorn GW 2nd. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria[J]. Science, 2013, 340(6131): 471-475. doi: 10.1126/science.1231031
[21] Wang HN, Yi XL, Guo S, et al. The XBP1‒MARCH5‒MFN2 axis confers endoplasmic reticulum stress resistance by coordinating mitochondrial fission and mitophagy in melanoma[J]. J Invest Dermatol, 2021, 141(12): 2932-2943. e12.
[22] Wang YH, Wang YW, Li FD, et al. Spermine protects cardiomyocytes from high glucose-induced energy disturbance by targeting the CaSR-gp78-ubiquitin proteasome system[J]. Cardiovasc Drugs Ther, 2021, 35(1): 73-85. doi: 10.1007/s10557-020-07064-z
[23] Franco A, Kitsis RN, Fleischer JA, et al. Correcting mitochondrial fusion by manipulating mitofusin conformations[J]. Nature, 2016, 540(7631): 74-79. doi: 10.1038/nature20156
[24] Rocha AG, Franco A, Krezel AM, et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A[J]. Science, 2018, 360(6386): 336-341. doi: 10.1126/science.aao1785
[25] Naón D, Hernández-Alvarez MI, Shinjo S, et al. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria[J]. Science, 2023, 380(6651): eadh9351. doi: 10.1126/science.adh9351
[26] Yepuri G, Ramirez LM, Theophall GG, et al. DIAPH1-MFN2 interaction regulates mitochondria-SR/ER contact and modulates ischemic/hypoxic stress[J]. Nat Commun, 2023, 14(1): 6900. doi: 10.1038/s41467-023-42521-x
[27] Zhou XF, Jiang YQ, Wang YW, et al. Endothelial FIS1 DeSUMOylation protects against hypoxic pulmonary hypertension[J]. Circ Res, 2023, 133(6): 508-531. doi: 10.1161/CIRCRESAHA.122.321200
[28] Yang JF, Xing XD, Luo L, et al. Mitochondria-ER contact mediated by MFN2-SERCA2 interaction supports CD8+ T cell metabolic fitness and function in tumors[J]. Sci Immunol, 2023, 8(87): eabq2424. doi: 10.1126/sciimmunol.abq2424
[29] Li T, Han JB, Jia LJ, et al. PKM2 coordinates glycolysis with mitochondrial fusion and oxidative phosphorylation[J]. Protein Cell, 2019, 10(8): 583-594. doi: 10.1007/s13238-019-0618-z
[30] Yao CH, Wang RC, Wang YH, et al. Mitochondrial fusion supports increased oxidative phosphorylation during cell proliferation[J]. eLife, 2019, 8: e41351. doi: 10.7554/eLife.41351
[31] Scheffer DDL, Garcia AA, Lee L, et al. Mitochondrial fusion, fission, and mitophagy in cardiac diseases: challenges and therapeutic opportunities[J]. Antioxid Redox Signal, 2022, 36(13/14/15): 844-863.
[32] Schneeberger M, Dietrich MO, Sebastián D, et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance[J]. Cell, 2013, 155(1): 172-187. doi: 10.1016/j.cell.2013.09.003
[33] Sebastián D, Hernández-Alvarez MI, Segalés J, et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis[J]. Proc Natl Acad Sci U S A, 2012, 109(14): 5523-5528. doi: 10.1073/pnas.1108220109
[34] Zhang R, Yang AL, Zhang L, et al. MFN2 deficiency promotes cardiac response to hypobaric hypoxia by reprogramming cardiomyocyte metabolism[J]. Acta Physiol, 2023, 239(1): e14018. doi: 10.1111/apha.14018
[35] Gottschalk B, Koshenov Z, Bachkoenig OA, et al. MFN2 mediates ER-mitochondrial coupling during ER stress through specialized stable contact sites[J]. Front Cell Dev Biol, 2022, 10: 918691. doi: 10.3389/fcell.2022.918691
[36] Cao Y, Chen ZW, Hu JJ, et al. Mfn2 regulates high glucose-induced MAMs dysfunction and apoptosis in podocytes via PERK pathway[J]. Front Cell Dev Biol, 2021, 9: 769213. doi: 10.3389/fcell.2021.769213
[37] Chen YQ, Li S, Yin M, et al. Isorhapontigenin attenuates cardiac microvascular injury in diabetes via the inhibition of mitochondria-associated ferroptosis through PRDX2-MFN2-ACSL4 pathways[J]. Diabetes, 2023, 72(3): 389-404. doi: 10.2337/db22-0553
[38] Deng HD, Zhu S, Zhu L, et al. Mfn2 is responsible for inhibition of the RIG-I/IRF7 pathway and activation of NLRP3 inflammasome in Seneca Valley virus-infected PK-15 cells to promote viral replication[J]. Front Immunol, 2022, 13: 955671. doi: 10.3389/fimmu.2022.955671
[39] Tur J, Pereira-Lopes S, Vico T, et al. Mitofusin 2 in macrophages links mitochondrial ROS production, cytokine release, phagocytosis, autophagy, and bactericidal activity[J]. Cell Rep, 2020, 32(8): 108079. doi: 10.1016/j.celrep.2020.108079
[40] Zhou YQ, Carmona S, Muhammad AKMG, et al. Restoring mitofusin balance prevents axonal degeneration in a Charcot-Marie-Tooth type 2A model[J]. J Clin Invest, 2021, 131(2): e147307. doi: 10.1172/JCI147307
[41] Das H, Sarkar S, Paidi RK, et al. Subtle genomic DNA damage induces intraneuronal production of amyloid-β (1-42) by increasing β-secretase activity[J]. FASEB J, 2021, 35(5): e21569.
[42] Krishna G, Santhoshkumar R, Sivakumar PT, et al. Pathological (dis)similarities in neuronal exosome-derived synaptic and organellar marker levels between Alzheimer’s disease and frontotemporal dementia[J]. J Alzheimers Dis, 2023, 94(s1): S387-S397. doi: 10.3233/JAD-220829
[43] Singh K, Sethi P, Datta S, et al. Advances in gene therapy approaches targeting neuro-inflammation in neurodegenerative diseases[J]. Ageing Res Rev, 2024, 98: 102321. doi: 10.1016/j.arr.2024.102321
[44] Panes JD, Wendt A, Ramirez-Molina O, et al. Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure[J]. Neural Regen Res, 2022, 17(2): 237-245. doi: 10.4103/1673-5374.317957
[45] Wang LW, Gao J, Liu JY, et al. Mitofusin 2 regulates axonal transport of calpastatin to prevent neuromuscular synaptic elimination in skeletal muscles[J]. Cell Metab, 2018, 28(3): 400-414. e8.
[46] Boutant M, Kulkarni SS, Joffraud M, et al. Mfn2 is critical for brown adipose tissue thermogenic function[J]. EMBO J, 2017, 36(11): 1543-1558. doi: 10.15252/embj.201694914
[47] Guberman M, Dhingra R, Cross J, et al. IKKβ stabilizes Mitofusin 2 and suppresses doxorubicin cardiomyopathy[J]. Cardiovasc Res, 2024, 120(2): 164-173. doi: 10.1093/cvr/cvad145
[48] Xie SY, Liu SQ, Zhang T, et al. USP28 serves as a key suppressor of mitochondrial morphofunctional defects and cardiac dysfunction in the diabetic heart[J]. Circulation, 2024, 149(9): 684-706. doi: 10.1161/CIRCULATIONAHA.123.065603
[49] Chen H, Zhang H, Li AM, et al. VDR regulates mitochondrial function as a protective mechanism against renal tubular cell injury in diabetic rats[J]. Redox Biol, 2024, 70: 103062. doi: 10.1016/j.redox.2024.103062
[50] Burtscher M, Burtscher J. MFN2: Shaping mitochondria and cardiac adaptations to hypoxia[J]. Acta Physiol, 2023, 239(2): e14026. doi: 10.1111/apha.14026
[51] Franco A, Li JJ, Kelly DP, et al. A human mitofusin 2 mutation can cause mitophagic cardiomyopathy[J]. eLife, 2023, 12: e84235. doi: 10.7554/eLife.84235
[52] Zhang Y, Li JJ, Xu R, et al. Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts[J]. Redox Biol, 2023, 68: 102944. doi: 10.1016/j.redox.2023.102944
[53] Zhu HZ, Shan YQ, Ge K, et al. Specific overexpression of mitofusin-2 in hepatic stellate cells ameliorates liver fibrosis in mice model[J]. Hum Gene Ther, 2020, 31(1/2): 103-109.
[54] Xue R, Yang J, Jia L, et al. Mitofusin2, as a protective target in the liver, controls the balance of apoptosis and autophagy in acute-on-chronic liver failure[J]. Front Pharmacol, 2019, 10: 601. doi: 10.3389/fphar.2019.00601
[55] Schollmeier A, Basic M, Glitscher M, et al. The impact of HBx protein on mitochondrial dynamics and associated signaling pathways strongly depends on the hepatitis B virus genotype[J]. J Virol, 2024, 98(5): e0042424. doi: 10.1128/jvi.00424-24
[56] Natarajan A, Beena PM, Devnikar AV, et al. A systemic review on tuberculosis[J]. Indian J Tuberc, 2020, 67(3): 295-311. doi: 10.1016/j.ijtb.2020.02.005
[57] Lee J, Choi JA, Cho SN, et al. Mitofusin 2-deficiency suppresses Mycobacterium tuberculosis survival in macrophages[J]. Cells, 2019, 8(11): 1355. doi: 10.3390/cells8111355
[58] Cheng XF, Li YQ, Liu FL. Prognostic impact of mitofusin 2 expression in colon cancer[J]. Transl Cancer Res, 2022, 11(10): 3610-3619. doi: 10.21037/tcr-22-589
[59] Zhang B, Han DL, Yang LM, et al. The mitochondrial fusion-associated protein MFN2 can be used as a novel prognostic molecule for clear cell renal cell carcinoma[J]. BMC Cancer, 2023, 23(1): 986. doi: 10.1186/s12885-023-11419-8
[60] Dang XW, Zhang LH, Franco A, et al. Discovery of 6-phenylhexanamide derivatives as potent stereoselective mitofusin activators for the treatment of mitochondrial diseases[J]. J Med Chem, 2020, 63(13): 7033-7051. doi: 10.1021/acs.jmedchem.0c00366
[61] Franco A, Dang XW, Walton EK, et al. Burst mitofusin activation reverses neuromuscular dysfunction in murine CMT2A[J]. eLife, 2020, 9: e61119. doi: 10.7554/eLife.61119
[62] Franco A, Dang XW, Zhang LH, et al. Mitochondrial dysfunction and pharmacodynamics of mitofusin activation in murine Charcot-Marie-tooth disease type 2A[J]. J Pharmacol Exp Ther, 2022, 383(2): 137-148. doi: 10.1124/jpet.122.001332
[63] Zacharioudakis E, Agianian B, Kumar Mv V, et al. Modulating mitofusins to control mitochondrial function and signaling[J]. Nat Commun, 2022, 13(1): 3775. doi: 10.1038/s41467-022-31324-1
[64] Dang XW, Williams SB, Devanathan S, et al. Pharmacophore-based design of phenyl-[hydroxycyclohexyl]cycloalkyl-carboxamide mitofusin activators with improved neuronal activity[J]. J Med Chem, 2021, 64(17): 12506-12524. doi: 10.1021/acs.jmedchem.1c00163