Design, synthesis and anticancer activity of superoxide anion-releasing beta-galactoside prodrugs
-
摘要:
以能在细胞内循环释放超氧阴离子(O2−)的蒽醌类化合物HAQ-OH和AQ-OH为原药,设计并合成了4个全新的蒽醌β-半乳糖苷前药,期望利用Warburg效应和肿瘤细胞内过表达的β-半乳糖苷酶选择性地在肿瘤细胞内释放O2−杀死肿瘤细胞。细胞实验表明,前药Gal-HAQ和Gal-AQ可选择性地抑制β-半乳糖苷酶过表达的卵巢癌OVCAR-3细胞的增殖并诱导细胞凋亡。O2−荧光探针发现,Gal-HAQ和Gal-AQ可时间依赖性地在OVCAR-3细胞内释放O2−,并且O2−对于其抗肿瘤活性至关重要。前药Gal-HAQ和Gal-AQ还可有效清除高表达β-半乳糖苷酶的衰老细胞,而不影响非衰老细胞,进一步证明了前药依赖β-半乳糖苷酶发挥其细胞毒性。综上,本研究发现的能响应β-半乳糖苷酶释放O2−的前药Gal-HAQ和Gal-AQ有望作为新型的抗肿瘤候选分子。
Abstract:Four novel β-galactoside prodrugs were designed and synthesized from anthraquinones HAQ-OH and AQ-OH in an attempt to use the prodrugs to selectively release superoxide anion (O2−) in cancer cells and to achieve selected anticancer activity by utilizing the Warburg effect and the elevated level of β-galactosidase in certain cancer cells. Cellular assays showed that the prodrugs Gal-HAQ and Gal-AQ selectively inhibited the proliferation and induced apoptosis of ovarian cancer OVCAR-3 cells overexpressing β-galactosidase. Using O2− fluorescent probe, it was found that in OVCAR-3 cells Gal-HAQ and Gal-AQ could time-dependently release O2−, which was essential for their anticancer activity. Furthermore, it was found that Gal-HAQ and Gal-AQ were effective senolytics toward senescent cells overexpressing β-galactosidase without affecting the viability of corresponding non-senescent cells, further confirming the β-galactosidase-dependent cytotoxicity of the prodrugs. In conclusion, Gal-HAQ and Gal-AQ, which release O2− in response to β-galactosidase, are expected to serve as candidate prodrugs targeting cancer cells.
-
Keywords:
- superoxide anion /
- β-galactoside prodrugs /
- anticancer drugs
-
-
1. Synthetic route of target prodrugs Gal-HAQ, Gal-AQ, Gal-HAQ-NO2, and Gal-AQ-NO2
Reagents and conditions: (a) CH2Cl2, HBr, CH3COOH, r.t.; (b) CH2Cl2, H2O, NaOH, 4-hydroxybenzaldehyde or 3-nitro-4-hydroxybenzaldehyde, r.t.; (c) THF, NaBH4, r.t.; (d) CH2Cl2, PBr3, r.t.; (e) CH2Cl2, Ag2O, HAQ-OH or AQ-OH, r.t..
Figure 5. Determination of intracellular O2−generation by dihydroethidium (DHE) probe
A: Principle of O2− detection by DHE; B: Generation of O2− by HAQ-OH, AQ-OH, Gal-HAQ and Gal-AQ in OVCAR-3 or HEK-293 cells after 12 h;C: Generation of O2− by Gal-HAQ and Gal-AQ in OVCAR-3 cells at different time ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3)
Figure 6. Effect of 2,2,6,6-tetramethylpiperidoxyl (TEMPOL) (50 μmol/L) on cytotoxicity of prodrugs in OVCAR-3 cells as analyzed by MTT assay ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3)
A: Effect of TEMPOL on cytotoxicity of Gal-HAQ in OVCAR-3(*P < 0.001 vs Gal-HAQ); B:Effect of TEMPOL on cytotoxicity of Gal-AQ in OVCAR-3(*P < 0.001 vs Gal-AQ)
Figure 8. Effects of Gal-HAQ and Gal-AQ on non-senescent/senescent A-549 or L-02 cells
A: Cytotoxicity of Gal-HAQ and Gal-AQ in non-senescent/senescent A-549 or L-02 cells as analyzed by MTT assay ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3). *P < 0.001, **P < 0.01 vs non-senescent A-549 cells; **P < 0.01, ***P < 0.05 vs non-senescent L-02 cells; B: Cytotoxicity of Gal-HAQ and Gal-AQ in non-senescent/senescent A-549 cells as revealed by crystal violet stain
Table 1 Cytotoxicity of indicated compounds in OVCAR-3, HEK-293, and L-02 cells as measured by MTT assay ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3)
Compd. IC50/(μmol/L) OVCAR-3 HEK-293 L-02 HAQ-OH 22.0 ± 0.9 18.0 ± 1.1 9.5 ± 1.9 AQ-OH 37.7 ± 1.3 22.1 ± 0.5 17.9 ± 3.4 Gal-HAQ 23.8 ± 1.1 ˃800 ˃800 Gal-AQ 105.6 ± 1.5 ˃800 ˃800 Gal-HAQ-NO2 116.1 ± 2.3 125.5 ± 1.1 130.8 ± 2.1 Gal-AQ-NO2 175.6 ± 2.7 271.4 ± 3.1 159.8 ± 2.4 Table 2 Effects of glucose transporter-1 (GLUT1) inhibitor phlorizin (1 mmol/L) on the cytotoxicity of indicated compounds in OVCAR-3 cells ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3)
Compd. IC50/(μmol/L) Without phlorizin Phlorizin pretreatment HAQ-OH 23.2 ± 0.5 25.3 ± 1.2 AQ-OH 19.5 ± 0.8 24.8 ± 1.0 Gal-HAQ 23.9 ± 1.4 86.7 ± 2.1* Gal-AQ 105.6 ± 2.0 168.9 ± 2.6* *P < 0.001 vs without phlorizin -
[1] Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: generation and chemical implications[J]. Chem Rev, 2016, 116(5): 3029-3085. doi: 10.1021/acs.chemrev.5b00407
[2] Yu J, Zhong BL, Jin L, et al. 2-methoxy-6-acetyl-7-methyljuglone (MAM) induced programmed necrosis in glioblastoma by targeting NAD(P)H: quinone oxidoreductase 1 (NQO1)[J]. Free Radic Biol Med, 2020, 152: 336-347. doi: 10.1016/j.freeradbiomed.2020.03.026
[3] Dharmaraja AT, Alvala M, Sriram D, et al. Design, synthesis and evaluation of small molecule reactive oxygen species generators as selective Mycobacterium tuberculosis inhibitors[J]. Chem Commun, 2012, 48(83): 10325-10327. doi: 10.1039/c2cc35343a
[4] Ku YC, Lin PH, Huang CY, et al. An iminocoumarin based covalent-assembly red-emitting fluorescent probe for detection of β-galactosidase activity in ovarian cancer cells[J]. Dyes Pigm, 2023, 210: 111004. doi: 10.1016/j.dyepig.2022.111004
[5] Dud M, Tichotová M, Procházková E, et al. Phosphate-based self-immolative linkers for the delivery of amine-containing drugs[J]. Molecules, 2021, 26(17): 5160. doi: 10.3390/molecules26175160
[6] Spring SA, Goggins S, Frost CG. Ratiometric electrochemical detection of β-galactosidase[J]. Org Biomol Chem, 2017, 15(34): 7122-7126. doi: 10.1039/C7OB01593C
[7] Liu XH, Tan YY, Li Q, et al. Synthesis and antitumor activity evaluation of glycoconjugates derived from natural product harmine[J]. J China Pharm Univ(中国药科大学学报), 2023, 54(6): 729-742. [8] Martin H, Lázaro LR, Gunnlaugsson T, et al. Glycosidase activated prodrugs for targeted cancer therapy[J]. Chem Soc Rev, 2022, 51(23): 9694-9716. doi: 10.1039/D2CS00379A
[9] Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies[J]. Hypertension, 2007, 49(4): 717-727. doi: 10.1161/01.HYP.0000258594.87211.6b
[10] Alzoubi KH, Rababa’h AM, Al Yacoub ON. Tempol prevents post-traumatic stress disorder induced memory impairment[J]. Physiol Behav, 2018, 184: 189-195. doi: 10.1016/j.physbeh.2017.12.002
[11] Blaschek W. Natural products as lead compounds for sodium glucose cotransporter (SGLT) inhibitors[J]. Planta Med, 2017, 83(12/13): 985-993. doi: 10.1055/s-0043-106050
[12] Nicastro LK, de Anda J, Jain N, et al. Assembly of ordered DNA-curli fibril complexes during Salmonella biofilm formation correlates with strengths of the type I interferon and autoimmune responses[J]. PLoS Pathog, 2022, 18(8): e1010742. doi: 10.1371/journal.ppat.1010742
[13] Rovira M, Sereda R, Pladevall-Morera D, et al. The lysosomal proteome of senescent cells contributes to the senescence secretome[J]. Aging Cell, 2022, 21(10): e13707. doi: 10.1111/acel.13707
[14] Behmoaras J, Gil J. Similarities and interplay between senescent cells and macrophages[J]. J Cell Biol, 2021, 220(2): e202010162. doi: 10.1083/jcb.202010162
[15] Kretschmer A, Zhang F, Somasekharan SP, et al. Stress-induced tunneling nanotubes support treatment adaptation in prostate cancer[J]. Sci Rep, 2019, 9(1): 7826. doi: 10.1038/s41598-019-44346-5
-
其他相关附件