高级检索

能释放超氧阴离子的β-半乳糖苷前药的设计、合成及抗肿瘤活性

刘珈璇, 姚雪妍, 谭云鹰, 胡静, 傅俊杰, 尹健

刘珈璇,姚雪妍,谭云鹰,等. 能释放超氧阴离子的β-半乳糖苷前药的设计、合成及抗肿瘤活性[J]. 中国药科大学学报,2025,56(3):295 − 304. DOI: 10.11665/j.issn.1000-5048.2024041401
引用本文: 刘珈璇,姚雪妍,谭云鹰,等. 能释放超氧阴离子的β-半乳糖苷前药的设计、合成及抗肿瘤活性[J]. 中国药科大学学报,2025,56(3):295 − 304. DOI: 10.11665/j.issn.1000-5048.2024041401
LIU Jiaxuan, YAO Xueyan, TAN Yunying, et al. Design, synthesis and anticancer activity of superoxide anion-releasing beta-galactoside prodrugs[J]. J China Pharm Univ, 2025, 56(3): 295 − 304. DOI: 10.11665/j.issn.1000-5048.2024041401
Citation: LIU Jiaxuan, YAO Xueyan, TAN Yunying, et al. Design, synthesis and anticancer activity of superoxide anion-releasing beta-galactoside prodrugs[J]. J China Pharm Univ, 2025, 56(3): 295 − 304. DOI: 10.11665/j.issn.1000-5048.2024041401

能释放超氧阴离子的β-半乳糖苷前药的设计、合成及抗肿瘤活性

基金项目: 

国家自然科学基金项目(No. 22325803)

undefined

详细信息
    通讯作者:

    傅俊杰: Tel:0510-85197039 E-mail:jfu@jiangnan.edu.cn

    尹健: Tel:0510-85328229 E-mail:jianyin@jiangnan.edu.cn

  • 中图分类号: R914;R979.1

Design, synthesis and anticancer activity of superoxide anion-releasing beta-galactoside prodrugs

Funds: 

undefined

This study was supported by the National Natural Science Foundation of China (No. 22325803)

  • 摘要:

    以能在细胞内循环释放超氧阴离子(O2)的蒽醌类化合物HAQ-OH和AQ-OH为原药,设计并合成了4个全新的蒽醌β-半乳糖苷前药,期望利用Warburg效应和肿瘤细胞内过表达的β-半乳糖苷酶选择性地在肿瘤细胞内释放O2杀死肿瘤细胞。细胞实验表明,前药Gal-HAQ和Gal-AQ可选择性地抑制β-半乳糖苷酶过表达的卵巢癌OVCAR-3细胞的增殖并诱导细胞凋亡。O2荧光探针发现,Gal-HAQ和Gal-AQ可时间依赖性地在OVCAR-3细胞内释放O2,并且O2对于其抗肿瘤活性至关重要。前药Gal-HAQ和Gal-AQ还可有效清除高表达β-半乳糖苷酶的衰老细胞,而不影响非衰老细胞,进一步证明了前药依赖β-半乳糖苷酶发挥其细胞毒性。综上,本研究发现的能响应β-半乳糖苷酶释放O2的前药Gal-HAQ和Gal-AQ有望作为新型的抗肿瘤候选分子。

    Abstract:

    Four novel β-galactoside prodrugs were designed and synthesized from anthraquinones HAQ-OH and AQ-OH in an attempt to use the prodrugs to selectively release superoxide anion (O2) in cancer cells and to achieve selected anticancer activity by utilizing the Warburg effect and the elevated level of β-galactosidase in certain cancer cells. Cellular assays showed that the prodrugs Gal-HAQ and Gal-AQ selectively inhibited the proliferation and induced apoptosis of ovarian cancer OVCAR-3 cells overexpressing β-galactosidase. Using O2 fluorescent probe, it was found that in OVCAR-3 cells Gal-HAQ and Gal-AQ could time-dependently release O2, which was essential for their anticancer activity. Furthermore, it was found that Gal-HAQ and Gal-AQ were effective senolytics toward senescent cells overexpressing β-galactosidase without affecting the viability of corresponding non-senescent cells, further confirming the β-galactosidase-dependent cytotoxicity of the prodrugs. In conclusion, Gal-HAQ and Gal-AQ, which release O2 in response to β-galactosidase, are expected to serve as candidate prodrugs targeting cancer cells.

  • Figure  1.   Design of O2-releasing β-galactoside prodrugs of 5-hydroxy-1,2,3,4,4a,9a-hexahydro-1,4-acetyl-9,10-anthraquinone (HAQ-OH) and 5-hydroxy-1,2,3,4-tetrahydro-1,4-ethylidene-9,10-anthraquinone (AQ-OH)

    1.   Synthetic route of target prodrugs Gal-HAQ, Gal-AQ, Gal-HAQ-NO2, and Gal-AQ-NO2

    Reagents and conditions: (a) CH2Cl2, HBr, CH3COOH, r.t.; (b) CH2Cl2, H2O, NaOH, 4-hydroxybenzaldehyde or 3-nitro-4-hydroxybenzaldehyde, r.t.; (c) THF, NaBH4, r.t.; (d) CH2Cl2, PBr3, r.t.; (e) CH2Cl2, Ag2O, HAQ-OH or AQ-OH, r.t..

    Figure  2.   Stability of prodrugs in PBS as analyzed by HPLC

    A:Stability of Gal-HAQ-NO2 in PBS; B:Stability of Gal-AQ-NO2 in PBS

    Figure  3.   Deacetylation of prodrugs Gal-HAQ’ (A)and Gal-AQ’(B) in A-549 cells as evidenced by mass spectrometry

    Figure  4.   Release of HAQ-OH (A) and AQ-OH (B) from prodrugs in OVCAR-3 cells as evidenced by HPLC

    Figure  5.   Determination of intracellular O2generation by dihydroethidium (DHE) probe

    A: Principle of O2 detection by DHE; B: Generation of O2 by HAQ-OH, AQ-OH, Gal-HAQ and Gal-AQ in OVCAR-3 or HEK-293 cells after 12 h;C: Generation of O2 by Gal-HAQ and Gal-AQ in OVCAR-3 cells at different time ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3)

    Figure  6.   Effect of 2,2,6,6-tetramethylpiperidoxyl (TEMPOL) (50 μmol/L) on cytotoxicity of prodrugs in OVCAR-3 cells as analyzed by MTT assay ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3)

    A: Effect of TEMPOL on cytotoxicity of Gal-HAQ in OVCAR-3(*P < 0.001 vs Gal-HAQ); B:Effect of TEMPOL on cytotoxicity of Gal-AQ in OVCAR-3(*P < 0.001 vs Gal-AQ)

    Figure  7.   Death- and apoptosis-inducing effects of Gal-HAQ and Gal-AQ

    A: Cell live/death staining of Gal-HAQ and Gal-AQ in OVCAR-3 cells(scale bar: 50 μmol/L); B:Annexin V-FITC/PI staining of apoptosis cells treated by indicated compounds (20 μmol/L)

    Figure  8.   Effects of Gal-HAQ and Gal-AQ on non-senescent/senescent A-549 or L-02 cells

    A: Cytotoxicity of Gal-HAQ and Gal-AQ in non-senescent/senescent A-549 or L-02 cells as analyzed by MTT assay ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3). *P < 0.001, **P < 0.01 vs non-senescent A-549 cells; **P < 0.01, ***P < 0.05 vs non-senescent L-02 cells; B: Cytotoxicity of Gal-HAQ and Gal-AQ in non-senescent/senescent A-549 cells as revealed by crystal violet stain

    Table  1   Cytotoxicity of indicated compounds in OVCAR-3, HEK-293, and L-02 cells as measured by MTT assay ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3)

    Compd.IC50/(μmol/L)
    OVCAR-3HEK-293L-02
    HAQ-OH22.0 ± 0.918.0 ± 1.19.5 ± 1.9
    AQ-OH37.7 ± 1.322.1 ± 0.517.9 ± 3.4
    Gal-HAQ23.8 ± 1.1˃800˃800
    Gal-AQ105.6 ± 1.5˃800˃800
    Gal-HAQ-NO2116.1 ± 2.3125.5 ± 1.1130.8 ± 2.1
    Gal-AQ-NO2175.6 ± 2.7271.4 ± 3.1159.8 ± 2.4
    下载: 导出CSV

    Table  2   Effects of glucose transporter-1 (GLUT1) inhibitor phlorizin (1 mmol/L) on the cytotoxicity of indicated compounds in OVCAR-3 cells ($\overline{\text{x}} \text{ ± } \text{s} $, n = 3)

    Compd. IC50/(μmol/L)
    Without phlorizin Phlorizin pretreatment
    HAQ-OH 23.2 ± 0.5 25.3 ± 1.2
    AQ-OH 19.5 ± 0.8 24.8 ± 1.0
    Gal-HAQ 23.9 ± 1.4 86.7 ± 2.1*
    Gal-AQ 105.6 ± 2.0 168.9 ± 2.6*
    *P < 0.001 vs without phlorizin
    下载: 导出CSV
  • [1]

    Hayyan M, Hashim MA, AlNashef IM. Superoxide ion: generation and chemical implications[J]. Chem Rev, 2016, 116(5): 3029-3085. doi: 10.1021/acs.chemrev.5b00407

    [2]

    Yu J, Zhong BL, Jin L, et al. 2-methoxy-6-acetyl-7-methyljuglone (MAM) induced programmed necrosis in glioblastoma by targeting NAD(P)H: quinone oxidoreductase 1 (NQO1)[J]. Free Radic Biol Med, 2020, 152: 336-347. doi: 10.1016/j.freeradbiomed.2020.03.026

    [3]

    Dharmaraja AT, Alvala M, Sriram D, et al. Design, synthesis and evaluation of small molecule reactive oxygen species generators as selective Mycobacterium tuberculosis inhibitors[J]. Chem Commun, 2012, 48(83): 10325-10327. doi: 10.1039/c2cc35343a

    [4]

    Ku YC, Lin PH, Huang CY, et al. An iminocoumarin based covalent-assembly red-emitting fluorescent probe for detection of β-galactosidase activity in ovarian cancer cells[J]. Dyes Pigm, 2023, 210: 111004. doi: 10.1016/j.dyepig.2022.111004

    [5]

    Dud M, Tichotová M, Procházková E, et al. Phosphate-based self-immolative linkers for the delivery of amine-containing drugs[J]. Molecules, 2021, 26(17): 5160. doi: 10.3390/molecules26175160

    [6]

    Spring SA, Goggins S, Frost CG. Ratiometric electrochemical detection of β-galactosidase[J]. Org Biomol Chem, 2017, 15(34): 7122-7126. doi: 10.1039/C7OB01593C

    [7] Liu XH, Tan YY, Li Q, et al. Synthesis and antitumor activity evaluation of glycoconjugates derived from natural product harmine[J]. J China Pharm Univ(中国药科大学学报), 2023, 54(6): 729-742.
    [8]

    Martin H, Lázaro LR, Gunnlaugsson T, et al. Glycosidase activated prodrugs for targeted cancer therapy[J]. Chem Soc Rev, 2022, 51(23): 9694-9716. doi: 10.1039/D2CS00379A

    [9]

    Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies[J]. Hypertension, 2007, 49(4): 717-727. doi: 10.1161/01.HYP.0000258594.87211.6b

    [10]

    Alzoubi KH, Rababa’h AM, Al Yacoub ON. Tempol prevents post-traumatic stress disorder induced memory impairment[J]. Physiol Behav, 2018, 184: 189-195. doi: 10.1016/j.physbeh.2017.12.002

    [11]

    Blaschek W. Natural products as lead compounds for sodium glucose cotransporter (SGLT) inhibitors[J]. Planta Med, 2017, 83(12/13): 985-993. doi: 10.1055/s-0043-106050

    [12]

    Nicastro LK, de Anda J, Jain N, et al. Assembly of ordered DNA-curli fibril complexes during Salmonella biofilm formation correlates with strengths of the type I interferon and autoimmune responses[J]. PLoS Pathog, 2022, 18(8): e1010742. doi: 10.1371/journal.ppat.1010742

    [13]

    Rovira M, Sereda R, Pladevall-Morera D, et al. The lysosomal proteome of senescent cells contributes to the senescence secretome[J]. Aging Cell, 2022, 21(10): e13707. doi: 10.1111/acel.13707

    [14]

    Behmoaras J, Gil J. Similarities and interplay between senescent cells and macrophages[J]. J Cell Biol, 2021, 220(2): e202010162. doi: 10.1083/jcb.202010162

    [15]

    Kretschmer A, Zhang F, Somasekharan SP, et al. Stress-induced tunneling nanotubes support treatment adaptation in prostate cancer[J]. Sci Rep, 2019, 9(1): 7826. doi: 10.1038/s41598-019-44346-5

图(9)  /  表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  12
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-13
  • 修回日期:  2024-10-16
  • 录用日期:  2024-10-20
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭