• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

污水中26种痕量卡西酮类新精神活性物质的HPLC-MS/MS检测方法

邓滨, 朱娜, 花镇东, 王优美, 苏梦翔

邓滨,朱娜,花镇东,等. 污水中26种痕量卡西酮类新精神活性物质的HPLC-MS/MS检测方法[J]. 中国药科大学学报,2025,56(2):148 − 154. DOI: 10.11665/j.issn.1000-5048.2024050603
引用本文: 邓滨,朱娜,花镇东,等. 污水中26种痕量卡西酮类新精神活性物质的HPLC-MS/MS检测方法[J]. 中国药科大学学报,2025,56(2):148 − 154. DOI: 10.11665/j.issn.1000-5048.2024050603
DENG Bin, ZHU Na, HUA Zhendong, et al. Determination of 26 trace cathinones new psychoactive substances in sewage by HPLC-MS/MS[J]. J China Pharm Univ, 2025, 56(2): 148 − 154. DOI: 10.11665/j.issn.1000-5048.2024050603
Citation: DENG Bin, ZHU Na, HUA Zhendong, et al. Determination of 26 trace cathinones new psychoactive substances in sewage by HPLC-MS/MS[J]. J China Pharm Univ, 2025, 56(2): 148 − 154. DOI: 10.11665/j.issn.1000-5048.2024050603

污水中26种痕量卡西酮类新精神活性物质的HPLC-MS/MS检测方法

基金项目: 国家重点研发计划资助项目(2022YFC3300902)
详细信息
    通讯作者:

    苏梦翔: Tel:025-83271350 E-mail:sumengxiang@cpu.edu.cn

  • 中图分类号: R917

Determination of 26 trace cathinones new psychoactive substances in sewage by HPLC-MS/MS

Funds: This study was supported by the National Key Research and Development Program of China (2022YFC3300902)
  • 摘要:

    建立了污水中26种痕量卡西酮类新精神活性物质的前处理及同时定量检测的方法,并成功应用于实际污水样品的检测。污水样品经过滤和加入内标溶液的预处理,在Oasis PRiME HLB固相萃取柱上经超纯水淋洗和甲醇溶液洗脱,在40 ℃下氮气吹干,用0.1%甲酸-乙腈溶液(95∶5)复溶,利用高效液相色谱-串联质谱(high-performance liquid chromatography-tandem mass spectrometry,HPLC-MS/MS)技术,采用选择反应监测(selected reaction monitoring,SRM)模式,用UPLC BEH C18(100 mm×2.1 mm,1.7 μm)色谱柱,柱温35 ℃,流动相为乙腈-0.1%甲酸的水溶液,梯度洗脱进行检测。经方法学验证,26种卡西酮类新精神活性物质的定量下限可达1.50~3.00 ng/L,其中21种待测物在1.50~375.0 ng/L范围内,5种在3.00~750.0 ng/L范围内,所有26种物质均具有良好的线性关系,相关系数r为0.99,批内和批间精密度的相对标准偏差(relative standard deviation,RSD)分别小于7.71%和13.91%,提取回收率均高于92.64%。该方法简单、准确、灵敏,可作为卡西酮类物质检测和滥用情况监测的方法。

    Abstract:

    A method for the pretreatment and qualitative detection of 26 trace cathinone new psychoactive substances in wastewater was established and applied in actual wastewater cases. The effluent samples were eluted on the Oasis PRiME HLB solid phase extraction column by ultra-pure water drenching and methanol solution, then dried with nitrogen at 40 ℃, and finally re-dissolved with 0.1% formic acid-acetonitrile solution (95∶5), and detected by liquid chromatography-tandem mass spectrometry, The effluent sample was determined by high-performance liquid chromatography-Tandem mass spectrometry (HPLC-MS/MS) using selected reaction monitoring (SRM) mode and separated on chromatographic column UPLC BEH C18(100 mm×2.1 mm, 1.7 μm) at 35 ℃ with a mobile phase consisting of acetonitrile-0.1% formic acid in aqueous solution gradient elution. After methodological validation, the lower quantification of 26 cathinone new psychoactive substances could reach 1.50−3.00 ng/L. Among these, 21 analytes fell within the concentration range of 1.50−375.0 ng/L, while 5 were detected in the range of 3.00−750.0 ng/L, the correlation coefficient was 0.99, within-and between-batch precision was less than 7.71% and 13.91%, respectively, and the extraction recoveries were higher than 92.64% . The method is simple, accurate, and sensitive, and can be used for cathinone detection and abuse monitoring.

  • Figure  1.   Total ion chromatogram (TIC) of the target analytes A:Blank redissolution solvent; B:Pure water; C:Pure water sample with the standard compounds; D:Wastewater sample fortified with the standard compounds; E:Wastewater sample

    Table  1   Quantitative ion information of 26 cathinones substances and deuterated internal standard methyl cathinones-D3 compounds and SRM

    No. IUPAC Name Compound Retention time/min SRM(m/z)(Collision energy)
    1 Methcathinone-D3 MC-D3 3.78 167.1→149.2*(12eV) 167.1→1 34.1(22eV)
    2 3,4-Methylenedioxy-N-methylcathinone Methylone 4.83 208.1→160.1*(25eV) 208.1→132.0(29eV)
    3 4-Fluoromethcathinone 4-FMC 4.92 182.1→147.8*(35eV) 182.1→103.2(28eV)
    4 N-Ethylaminopropiophenone Ethcathinone 5.11 178.1→160.1*(13eV) 178.1→132.1(18eV)
    5 1-(1,3-Benzodioxol-5-yl)-2-(dimethylamino)propan-1-one Dimethylone 5.38 222.1→147.1*(20eV) 222.1→177.1(15eV)
    6 1-(1,3-Benzodioxol-5-yl)-2-(ethylamino)propan-1-one Ethylone 5.92 222.1→174.0*(19eV) 222.1→204.1(13eV)
    7 1-(4-Methoxyphenyl)-2-(methylamino)propan-1-one 4-MeOMC 6.11 194.1→176.0*(13eV) 194.1→161.0(21eV)
    8 2-(Methylamino)-1-phenylbutan-1-one Buphedrone 6.26 178.1→160.2*(12eV) 178.1→131.1(23eV)
    9 1-(1,3-Benzodioxol-5-yl)-2-pyrrolidin-1-ylpropan-1-one MDPPP 6.57 248.1→147.2*(22eV) 248.1→98.1(27eV)
    10 1-(1,3-Benzodioxol-5-yl)-2-(methylamino)butan-1-one Butylone 6.82 222.1→174.1*(18eV) 222.1→204.1(13eV)
    11 2-(Ethylamino)-1-phenylbutan-1-one NEB 6.96 192.1→174.1*(13eV) 192.1→91.1(25eV)
    12 1-(1,3-Benzodioxol-5-yl)-2-(dimethylamino)butan-1-one Dibutylone 7.08 236.1→191.0*(12eV) 236.1→86.2(20eV)
    13 2-(Methylamino)-1-(3-methylphenyl)propan-1-one 3-MMC 7.14 178.1→160.2*(13eV) 178.1→145.1(21eV)
    14 1-Phenyl-2-(1-pyrrolidinyl) butan-1-one α-PBP 7.26 218.15→91.1*(23eV) 218.15→112.1(26eV)
    15 1-(1,3-Benzodioxol-5-yl)-2-pyrrolidin-1-ylbutan-1-one MDPBP 7.77 262.1→191.1*(17eV) 262.1→161.0(19eV)
    16 2-(Ethylamino)-1-(4-methylphenyl)propan-1-one 4-MEC 8.18 192.1→174.1*(13eV) 192.1→144.2(28eV)
    17 2-Pyrrolidin-1-yl-1-thiophen-2-ylpentan-1-one α-PVT 8.19 238.1→126.0*(16eV) 238.1→96.7(23eV)
    18 2-(Methylamino)-1-phenylpentan-1-one Pentedrone 8.19 192.1→174.05*(13eV) 192.1→145.1(22eV)
    19 1-(4-Chlorophenyl)-2-(ethylamino)propan-1-one 4-CEC 8.29 212.1→159.3*(21eV) 212.1→144.1(22eV)
    20 1-(4-Methylphenyl)-2-methylaminobutan-1-one 4-MeBP 8.54 192.1→174.25*(12eV) 192.1→144.2(32eV)
    21 1-(3,4-Dimethylphenyl)-2-methylaminopropan-1-one 3,4-DMMC 8.97 192.1→174.2*(13eV) 192.1→159.3(20eV)
    22 1-Phenyl-2-(1-pyrrolidinyl)pentan-1-one α-PVP 9.01 232.2→91.1*(25eV) 232.2→126.2(28eV)
    23 1-(1,3-Benzodioxol-5-yl)-2-(ethylamino)pentan-1-one N-ethylpentylone 9.01 250.1→174.0*(33eV) 250.1→145.1(39eV)
    24 1-(1,3-Benzodioxol-5-yl)-2-pyrrolidin-1-ylpentan-1-one MDPV 9.37 276.2→174.9*(21eV) 276.2→204.6(19eV)
    25 1-(4-Fluorophenyl)-2-pyrrolidin-1-ylpentan-1-one 4-F-α-PVP 9.61 250.2→109.0*(19eV) 250.2→126.1(23eV)
    26 1-(4-Methoxyphenyl)-2-pyrrolidin-1-ylpentan-1-one 4-MeO-α-PVP 10.02 262.2→121.1*(25eV) 262.2→191.0(17eV)
    27 1-Phenyl-2-(1-pyrrolidinyl)heptan-1-one α-PHPP 12.12 260.2→91.1*(26eV) 260.2→154.2(28eV)
    Ion pair with * is used as the quantitative ion and the other ion pair is used as the qualitative ion
    下载: 导出CSV
  • [1]

    Bade R, Abdelaziz A, Nguyen L, et al. Determination of 21 synthetic cathinones, phenethylamines, amphetamines and opioids in influent wastewater using liquid chromatography coupled to tandem mass spectrometry[J]. Talanta, 2020, 208: 120479. doi: 10.1016/j.talanta.2019.120479

    [2]

    Simmler LD, Rickli A, Hoener MC, et al. Monoamine transporter and receptor interaction profiles of a new series of designer cathinones[J]. Neuropharmacology, 2014, 79: 152-160. doi: 10.1016/j.neuropharm.2013.11.008

    [3] Xu P, Liu MX, Wang YM, et al. Research progress in abuse and dependency evaluation of synthetic cathinones[J]. Chin J Drug Depend (中国药物依赖性杂志), 2018, 27(2): 89-93,98.
    [4] Zheng XY, Yuan MJ, Wang DG, et al. Sewage epidemiology for drug situation assessment[J]. Asian J Ecotoxicol (生态毒理学报), 2020, 15(4): 79-87.
    [5]

    Carnevale Miino M, Macsek T, Halešová T, et al. Pharmaceutical and narcotics monitoring in Brno wastewater system and estimation of seasonal effect on the abuse of illicit drugs by a wastewater-based epidemiology approach[J]. Sci Total Environ, 2023, 891: 164386. doi: 10.1016/j.scitotenv.2023.164386

    [6] Zheng WQ, Ning HY, Chen H, et al. Analysis of 11 drugs in wastewater by flow injection-tandem mass spectrometry[J]. Chin J Anal Lab (分析试验室), 2024, 43(5): 705-710.
    [7] Peng XQ, Zhao JH, Lai HJ, et al. Determination of 17 illegal drugs in sewage by cation exchange solid phase extraction coupled with liquid chromatography-tandem mass spectrometry[J]. Chem Res Appl(化学研究与应用), 2023, 35(8): 1956-1965.
    [8] Wang JY, Hou CZ, Hua ZD, et al. Simultaneous determination of illicit drugs and their metabolites in wastewater by SPE-UPLC-MS/MS[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(3): 305-312.
    [9] Yu LL, Chu TT, Hou CZ, et al. Quantitative determination of 10 illicit drugs in wastewater by liquid-liquid extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(6): 707-712.
    [10] Wang Y, Xu L, Xu P, et al. Optimization and validation of the analytical methods to detect common illicit drugs in sewage[J]. J China Pharm Univ (中国药科大学学报), 2022, 53(4): 467-472.
    [11] Liu DX, Ling J, Zhao MM, et al. Determination of methcathinone and cathinone in urine by HPLC-MS/MS[J]. Chin J Pharm Anal (药物分析杂志), 2022, 42(5): 802-808.
    [12]

    Yang FS, Lee HH, Tseng LP, et al. Simultaneous determination and stability analysis of ten new psychoactive substances including synthetic cathinones, phenethylamines, and ketamine substitutes in urine using liquid chromatography-tandem mass spectrometry[J]. Int J Anal Chem, 2023, 2023: 9895595.

    [13] Sun LM, Wang SC, Lin XW, et al. Simultaneous determination of 12 cathinones in blood samples by online solid phase extraction coupled to UPLC-MS/MS[J]. Chin J Forensic Sci (中国司法鉴定), 2023 (2): 55-60.
    [14] Xiao K, Yang XF, Shi SP, et al. Stability test study for monitoring methcathinone in sewage based on a UPLC-MS/MS method[J]. Chin J Forensic Med (中国法医学杂志), 2021, 36(5): 465-469.
    [15]

    Salgueiro-González N, Zuccato E, Castiglioni S. Nationwide investigation on the use of new psychoactive substances in Italy through urban wastewater analysis[J]. Sci Total Environ, 2022, 843: 156982. doi: 10.1016/j.scitotenv.2022.156982

    [16]

    López-García E, Mastroianni N, Postigo C, et al. A fully automated approach for the analysis of 37 psychoactive substances in raw wastewater based on on-line solid phase extraction-liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2018, 1576: 80-89. doi: 10.1016/j.chroma.2018.09.038

    [17]

    Gao TT, Du P, Xu ZQ, et al. Occurrence of new psychoactive substances in wastewater of major Chinese cities[J]. Sci Total Environ, 2017, 575: 963-969. doi: 10.1016/j.scitotenv.2016.09.152

    [18]

    González-Mariño I, Gracia-Lor E, Bagnati R, et al. Screening new psychoactive substances in urban wastewater using high resolution mass spectrometry[J]. Anal Bioanal Chem, 2016, 408(16): 4297-4309. doi: 10.1007/s00216-016-9521-0

    [19]

    Bade R, White JM, Nguyen L, et al. Determining changes in new psychoactive substance use in Australia by wastewater analysis[J]. Sci Total Environ, 2020, 731: 139209. doi: 10.1016/j.scitotenv.2020.139209

    [20]

    Bijlsma L, Celma A, Castiglioni S, et al. Monitoring psychoactive substance use at six European festivals through wastewater and pooled urine analysis[J]. Sci Total Environ, 2020, 725: 138376. doi: 10.1016/j.scitotenv.2020.138376

    [21]

    Borova VL, Gago-Ferrero P, Pistos C, et al. Multi-residue determination of 10 selected new psychoactive substances in wastewater samples by liquid chromatography-tandem mass spectrometry[J]. Talanta, 2015, 144: 592-603. doi: 10.1016/j.talanta.2015.06.080

    [22]

    Fontanals N, Marcé RM, Borrull F. Solid-phase extraction followed by liquid chromatography-high resolution mass spectrometry to determine synthetic cathinones in different types of environmental water samples[J]. J Chromatogr A, 2017, 1524: 66-73. doi: 10.1016/j.chroma.2017.10.002

    [23] Li K, Hu QK, Shi YS, et al. Study on the adsorption effect of different material filter membranes on 21 drugs and metabolites such as methamphetamine in wastewater[J]. Guangdong Gongan Keji(广东公安科技), 2022, 30(4): 34-38.
图(1)  /  表(1)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  33
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-05
  • 刊出日期:  2025-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭