• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

污水毒情监测中质量控制方法研究进展

肖月, 原帅, 骆如欣, 朱瑞琴, 狄斌, 向平

肖月,原帅,骆如欣,等. 污水毒情监测中质量控制方法研究进展[J]. 中国药科大学学报,2025,56(2):139 − 147. DOI: 10.11665/j.issn.1000-5048.2024051401
引用本文: 肖月,原帅,骆如欣,等. 污水毒情监测中质量控制方法研究进展[J]. 中国药科大学学报,2025,56(2):139 − 147. DOI: 10.11665/j.issn.1000-5048.2024051401
XIAO Yue, YUAN Shuai, LUO Ruxin, et al. Research progress on quality control methods for monitoring illicit drugs use in wastewater[J]. J China Pharm Univ, 2025, 56(2): 139 − 147. DOI: 10.11665/j.issn.1000-5048.2024051401
Citation: XIAO Yue, YUAN Shuai, LUO Ruxin, et al. Research progress on quality control methods for monitoring illicit drugs use in wastewater[J]. J China Pharm Univ, 2025, 56(2): 139 − 147. DOI: 10.11665/j.issn.1000-5048.2024051401

污水毒情监测中质量控制方法研究进展

基金项目: “十四五”国家重点研发计划资助项目(2022YFC3300903);上海市法医学重点实验室资助项目(21DZ2270800);上海市司法鉴定专业技术服务平台项目(19DZ2292700)
详细信息
    通讯作者:

    向平: Tel:13801896263 E-mail:xiangping2630@163.com

  • 中图分类号: R917

Research progress on quality control methods for monitoring illicit drugs use in wastewater

Funds: This study was supported by the National Key Research and Development Program of China (2022YFC3300903), the Shanghai Key Laboratory of Forensic Medicine (21DZ2270800) and the Shanghai Forensic Service Platform (19DZ2292700)
  • 摘要:

    采用污水分析法,即污水流行病学,对各个国家及地区毒品和药物滥用情况进行评估与监控现已在国内外得到了广泛的应用。但是目前缺乏有效的评价方法和比较、监督、规范的有效途径,不利于不同国家、地区毒情的分析及比较。质量控制技术能够控制实验室的分析误差,保障鉴定结论的一致性和可比性,推动城市毒品治理水平和治理能力的进一步提升,具有重要意义。本文就污水分析过程中的样品采集、样品保存和运输、实验室检测、毒品消耗量反算模型和实验室外部质量控制进行了综述,以期探索更加全面的适合在实验室之间进行污水中毒品的定性定量分析能力考察和评价的科学、客观的方法和途径。

    Abstract:

    The use of wastewater analysis, or wastewater-based epidemiology, to assess and monitor the situation of drug abuse is now widely used at home and abroad. However, there is currently a lack of effective evaluation methods and effective ways of comparison, supervision and standardization, which is not conducive to the analysis and comparisons of data in different countries and regions. Quality control techniques can control the laboratory's analytical errors, safeguard the consistency and comparability of identification conclusions, and promote the further improvement of the level and capacity of urban drug governance, thus playing significant roles. This paper provides an overview of sample collection, sample preservation and transportation, laboratory analysis, back-calculation of drug use and external laboratory quality control in the process of wastewater analysis, with a view to exploring more comprehensive scientific and objective methods and approaches suitable for examining and evaluating qualitative and quantitative analysis of drugs in wastewater among laboratories.

  • 表  1   滥用物质在不同条件下的降解情况

    滥用物质 稳定性 参考文献
    可替宁 在22 ℃下可以保持低于20%的转化率约3周,−20 ℃下可以保持6个月,具有高度稳定性 [22]
    3,4-亚甲二氧基苯丙胺(MDA) 在pH 7.4,19或20 ℃的条件下,未过滤的污水转化率<10%;
    在4 ℃和20 ℃下,72 h内转化率<10%;
    在 −20 ℃下,123 d内转化率<30%;
    在4 ℃下储存可稳定14 d
    [3031]
    3,4-亚甲二氧基-N-乙基安非他明(MDEA) 在pH 7.4,19 ℃的条件下,未过滤的污水转化率<10%;
    在4 ℃和20 ℃下24 h内转化率<10%;
    在−20 ℃下,123 d内降解率<20%
    [30]
    海洛因 在2 ℃和19 ℃下12 h后降解率分别为66%和79% [32]
    吗啡 在未过滤的污水中损失高达50%(19 ℃, pH 7.4);
    在−20 ℃下,3、7、17、27 d的降解率<20%;
    在4 ℃下,3 d增加>20%(其他物质的转化产物)
    [30,33]
    羟考酮 在−20 ℃下,3、7、17、27、123 d的降解率<10%;
    在 19 ℃,pH 7.4 的未过滤污水中,转化率小于 20%
    [30,32]
    芬太尼 在室温下过滤后的污水降解<10%;
    在pH 7.4,2 ℃条件下未过滤的污水72 h损失小于20%,但在19 ℃下损失62%
    [30,32]
    氯胺酮、去甲氯胺酮 在20 ℃,pH 7.5条件下未过滤的污水转化率小于10% [30]
    下载: 导出CSV

    表  2   用于反向计算的毒品/药物代谢目标分析物、排泄百分比及校正因子

    毒品/药物 毒品/药物代谢
    目标分析物
    排泄百分比/% 校正因子 参考文献
    可卡因 苯甲酰爱康宁 45 2.33 [62]
    苯甲酰爱康宁 35 3.1 [63]
    苯甲酰爱康宁 32.5 3.2 [64]
    可卡因 7.5 13 [64]
    甲基苯丙胺 甲基苯丙胺 43 2.3 [62]
    甲基苯丙胺 39 2.6 [63]
    甲基苯丙胺 33 4.06 [64]
    MDMA MDMA 65 1.5 [62]
    MDMA 15 6.7 [63]
    可待因 可待因 70 1.4 [64]
    可待因 63.8 1.6 [64]
    美沙酮 EDDP 25 3.28 [65]
    美沙酮 27.5 3.6 [64]
    氯胺酮 氯胺酮 3 3.3 [64]
    去甲氯胺酮 1.6 65 [64]
    海洛因 吗啡 42 3.1 [62, 65]
    大麻 THC-COOH 0.6 152 [62, 65]
    麻黄碱 麻黄碱 75 1.3 [62]
    安非他明 安非他明 30 3.3 [62]
    羟考酮 羟考酮 14 221 [64]
    吗氯贝胺 吗氯贝胺 1 100 [66]
    米氮平 米氮平 4 25 [66]
    奥匹哌醇 奥匹哌醇 10 10 [66]
    文拉法辛 文拉法辛 4.7 21 [66]
    文拉法辛 10.4 9.62 [67]
    西酞普兰 西酞普兰 20 5 [66]
    西酞普兰 38 2.63 [67]
    阿米替林 阿米替林 1 100 [66]
    丙咪嗪 丙咪嗪 5 20 [66]
    氯丙咪嗪 氯丙咪嗪 1 100 [66]
    曲马多 曲马多 30 3.3 [67]
    下载: 导出CSV
  • [1]

    Boogaerts T, Ahmed F, Choi PM, et al. Current and future perspectives for wastewater-based epidemiology as a monitoring tool for pharmaceutical use[J]. Sci Total Environ, 2021, 789: 148047. doi: 10.1016/j.scitotenv.2021.148047

    [2]

    Moslah B, Smaoui O, Nouioui MA, et al. Sewage analysis as an alternative tool for assessing drug of abuse and new psychoactive substances in Tunisia[J]. Forensic Sci Int, 2023, 347: 111672. doi: 10.1016/j.forsciint.2023.111672

    [3]

    Santana-Viera S, Lara-Martín PA, González-Mazo E. High resolution mass spectrometry (HRMS) determination of drugs in wastewater and wastewater based epidemiology in Cadiz Bay (Spain)[J]. J Environ Manage, 2023, 341: 118000. doi: 10.1016/j.jenvman.2023.118000

    [4] Zheng WQ, Ning HY, Chen H, et al. Analysis of 11 drugs in wastewater by flow injection-tandem mass spectrometry[J]. Chin J Anal Lab (分析试验室), 2024, 43(5): 705-710.
    [5] Wang Y, Xu L, Xu P, et al. Optimization and validation of the analytical methods to detect common illicit drugs in sewage[J]. J China Pharm Univ (中国药科大学学报), 2022, 53(4): 467-472.
    [6] Ren H, Zhang SJ, Zhao YL, et al. Screening of 50 emerging contaminants in wastewater by micro-direct-injection UPLC-MS/MS[J]. J Chin Mass Spectrom Soc (质谱学报), 2023, 44(2): 286-298.
    [7] Dong LR, Diao YH, An N, et al. Analysis of internal quality control results based on test of quality control samples[J]. China Stand (中国标准化), 2023(21): 214-218.
    [8] Jia JF, Fan YE. Quality control methods within the laboratory[J]. Shanxi Chem Ind (山西化工), 2023, 43(6): 123-124.
    [9] Ren H, Zhao YL, Yuan S, et al. Discovering global trends in illicit drugs by wastewater-based epidemiology[J]. Chin J Forensic Sci (中国司法鉴定), 2022(5): 22-38.
    [10]

    Ren H, Yuan S, Zheng JM, et al. Direct injection ultra-performance liquid chromatography-tandem mass spectrometry for the high-throughput determination of 11 illicit drugs and metabolites in wastewater[J]. J Chromatogr A, 2022, 1685: 463587. doi: 10.1016/j.chroma.2022.463587

    [11] Zhang F. Quality control of field sampling of wastewater for environmental monitoring[J]. Low Carbon World(低碳世界), 2023, 13(10): 31-3.
    [12] Liu X, Zeng TT, Zhang JX. Analysis of influencing factors of on-site sampling of environmental monitoring water and wastewater[J]. Technol Wind (科技风), 2020(1): 118.
    [13]

    Fenet H, Arpin-Pont L, Vanhoutte-Brunier A, et al. Reducing PEC uncertainty in coastal zones: a case study on carbamazepine, oxcarbazepine and their metabolites[J]. Environ Int, 2014, 68: 177-184. doi: 10.1016/j.envint.2014.03.025

    [14] Xie YM, Hu L, Wu QR. Study on influencing factors of on-site sampling of environmental monitoring water and wastewater[J]. Resour Econ Environ Prot (资源节约与环保), 2021(8): 54-55.
    [15] Shanghai Association of Forensic Science. T/SHSFJD 0001—2021 Technical Specifications for Domestic Wastewater Sampling and Common Illicit Drugs Determination (生活污水采样及常见毒品检测技术规范)[S]. Shanghai, 2021.
    [16]

    Technical Specifications for Wastewater Monitoring: HJ 91.1—2019[S].

    [17]

    Ort C, Lawrence MG, Rieckermann J, et al. Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: are your conclusions valid? A critical review[J]. Environ Sci Technol, 2010, 44(16): 6024-6035. doi: 10.1021/es100779n

    [18]

    Castiglioni S, Bijlsma L, Covaci A, et al. Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers[J]. Environ Sci Technol, 2013, 47(3): 1452-1460. doi: 10.1021/es302722f

    [19]

    Lin WT, Huang ZS, Gao SY, et al. Evaluating the stability of prescription drugs in municipal wastewater and sewers based on wastewater-based epidemiology[J]. Sci Total Environ, 2021, 754: 142414. doi: 10.1016/j.scitotenv.2020.142414

    [20]

    Devault DA, Lévi Y, Karolak S. Applying sewage epidemiology approach to estimate illicit drug consumption in a tropical context: bias related to sewage temperature and pH[J]. Sci Total Environ, 2017, 584/585: 252-258. doi: 10.1016/j.scitotenv.2017.01.114

    [21]

    Liu F, Nielsen AH, Vollertsen J. Sorption and degradation potential of pharmaceuticals in sediments from a stormwater retention pond[J]. Water, 2019, 11(3): 526. doi: 10.3390/w11030526

    [22]

    Che XF, Liu PP, Ding Y, et al. In-sample stability and post sampling analysis of 21 illicit drugs, their metabolites and cotinine in wastewater[J]. Ecotoxicol Environ Saf, 2024, 270: 115900. doi: 10.1016/j.ecoenv.2023.115900

    [23]

    Li JY, Gao JF, Zheng QD, et al. Effects of pH, temperature, suspended solids, and biological activity on transformation of illicit drug and pharmaceutical biomarkers in sewers[J]. Environ Sci Technol, 2021, 55(13): 8771-8782. doi: 10.1021/acs.est.1c01516

    [24]

    Li JY, Gao JF, Thai PK, et al. Transformation of illicit drugs and pharmaceuticals in sewer sediments[J]. Environ Sci Technol, 2020, 54(20): 13056-13065. doi: 10.1021/acs.est.0c04266

    [25]

    Hart OE, Halden RU. Simulated 2017 nationwide sampling at 13, 940 major U. S. sewage treatment plants to assess seasonal population bias in wastewater-based epidemiology[J]. Sci Total Environ, 2020, 727: 138406. doi: 10.1016/j.scitotenv.2020.138406

    [26]

    Hart OE, Halden RU. Modeling wastewater temperature and attenuation of sewage-borne biomarkers globally[J]. Water Res, 2020, 172: 115473. doi: 10.1016/j.watres.2020.115473

    [27]

    Hernández F, Castiglioni S, Covaci A, et al. Mass spectrometric strategies for the investigation of biomarkers of illicit drug use in wastewater[J]. Mass Spectrom Rev, 2018, 37(3): 258-280. doi: 10.1002/mas.21525

    [28]

    Kneisel S, Speck M, Moosmann B, et al. Stability of 11 prevalent synthetic cannabinoids in authentic neat oral fluid samples: glass versus polypropylene containers at different temperatures[J]. Drug Test Anal, 2013, 5(7): 602-606. doi: 10.1002/dta.1497

    [29]

    Djilali E, Pappalardo L, Posadino AM, et al. Effects of the storage conditions on the stability of natural and synthetic Cannabis in biological matrices for forensic toxicology analysis: an update from the literature[J]. Metabolites, 2022, 12(9): 801. doi: 10.3390/metabo12090801

    [30]

    McCall AK, Bade R, Kinyua J, et al. Critical review on the stability of illicit drugs in sewers and wastewater samples[J]. Water Res, 2016, 88: 933-947. doi: 10.1016/j.watres.2015.10.040

    [31]

    Chen C, Kostakis C, Irvine RJ, et al. Evaluation of pre-analysis loss of dependent drugs in wastewater: stability and binding assessments[J]. Drug Test Anal, 2013, 5(8): 716-721. doi: 10.1002/dta.1428

    [32]

    Baker DR, Kasprzyk-Hordern B. Critical evaluation of methodology commonly used in sample collection, storage and preparation for the analysis of pharmaceuticals and illicit drugs in surface water and wastewater by solid phase extraction and liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2011, 1218(44): 8036-8059. doi: 10.1016/j.chroma.2011.09.012

    [33]

    Castiglioni S, Zuccato E, Crisci E, et al. Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography-tandem mass spectrometry[J]. Anal Chem, 2006, 78(24): 8421-8429. doi: 10.1021/ac061095b

    [34]

    Bade R, Abdelaziz A, Nguyen L, et al. Determination of 21 synthetic cathinones, phenethylamines, amphetamines and opioids in influent wastewater using liquid chromatography coupled to tandem mass spectrometry[J]. Talanta, 2020, 208: 120479. doi: 10.1016/j.talanta.2019.120479

    [35]

    Yuan S, Wang X, Wang RJ, et al. Simultaneous determination of 11 illicit drugs and metabolites in wastewater by UPLC-MS/MS[J]. Water Sci Technol, 2020, 82(9): 1771-1780. doi: 10.2166/wst.2020.445

    [36]

    Wang JY, Qi LK, Hou CZ, et al. Automatic analytical approach for the determination of 12 illicit drugs and nicotine metabolites in wastewater using on-line SPE-UHPLC-MS/MS[J]. J Pharm Anal, 2021, 11(6): 739-745. doi: 10.1016/j.jpha.2021.01.002

    [37]

    González-Mariño I, Thomas KV, Reid MJ. Determination of cannabinoid and synthetic cannabinoid metabolites in wastewater by liquid-liquid extraction and ultra-high performance supercritical fluid chromatography-tandem mass spectrometry[J]. Drug Test Anal, 2018, 10(1): 222-228. doi: 10.1002/dta.2199

    [38] Yu LL, Chu TT, Hou CZ, et al. Quantitative determination of 10 illicit drugs in wastewater by liquid-liquid extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(6): 707-712.
    [39]

    Sereshti H, Duman O, Tunç S, et al. Nanosorbent-based solid phase microextraction techniques for the monitoring of emerging organic contaminants in water and wastewater samples[J]. Mikrochim Acta, 2020, 187(9): 541. doi: 10.1007/s00604-020-04527-w

    [40]

    Kalaboka M, Sakkas V. Magnetic solid-phase extraction based on silica and graphene materials for sensitive analysis of emerging contaminants in wastewater with the aid of UHPLC-Orbitrap-MS[J]. Molecules, 2023, 28(5): 2277. doi: 10.3390/molecules28052277

    [41]

    Yuan S, Xiang Y, Chen LZ, et al. Magnetic solid-phase extraction based on polydopamine-coated magnetic nanoparticles for rapid and sensitive analysis of eleven illicit drugs and metabolites in wastewater with the aid of UHPLC-MS/MS[J]. J Chromatogr A, 2024, 1718: 464703. doi: 10.1016/j.chroma.2024.464703

    [42]

    Bade R, Eaglesham G, Shimko KM, et al. Quantification of new psychoactive substances in Australian wastewater utilising direct injection liquid chromatography coupled to tandem mass spectrometry[J]. Talanta, 2023, 251: 123767. doi: 10.1016/j.talanta.2022.123767

    [43] Yuan S, Luo RX, Xiang P. Research advances in the monitoring of new psychoactive substances in municipal wastewater[J]. J Forensic Med (法医学杂志), 2021, 37(4): 470-478.
    [44] Yuan S, Ren H, Luo RX, et al. Comparison and application of the direct injection method and solid phase extraction method in wastewater toxicology monitoring[J]. Chin J Forensic Med (中国法医学杂志), 2023, 38(5): 559-565.
    [45]

    Celma A, Sancho JV, Salgueiro-González N, et al. Simultaneous determination of new psychoactive substances and illicit drugs in sewage: potential of micro-liquid chromatography tandem mass spectrometry in wastewater-based epidemiology[J]. J Chromatogr A, 2019, 1602: 300-309. doi: 10.1016/j.chroma.2019.05.051

    [46]

    Lee HJ, Oh JE. Target and suspect screening of (new) psychoactive substances in South Korean wastewater by LC-HRMS[J]. Sci Total Environ, 2023, 875: 162613. doi: 10.1016/j.scitotenv.2023.162613

    [47] Hu LY. Internal quality control and external quality control of sewage analysis[J]. Guangdong Chem Ind (广东化工), 2019, 46(14): 122-123.
    [48]

    Zhao ZY, Zheng QD, Tscharke BJ, et al. Refining the correction factor for a better monitoring of antidepressant use by wastewater-based epidemiology: a case study of amitriptyline[J]. Sci Total Environ, 2024, 926: 172057. doi: 10.1016/j.scitotenv.2024.172057

    [49]

    Ahmed F, Tscharke B, O’Brien JW, et al. National wastewater reconnaissance of analgesic consumption in Australia[J]. Environ Sci Technol, 2023, 57(4): 1712-1720. doi: 10.1021/acs.est.2c06691

    [50] Ministry of Justice. SF/T 0063—2020 General Rules for Method Validation in Forensic Toxicology (法医毒物分析方法验证通则) [S]. Beijing, 2020.
    [51]

    Borova VL, Gago-Ferrero P, Pistos C, et al. Multi-residue determination of 10 selected new psychoactive substances in wastewater samples by liquid chromatography-tandem mass spectrometry[J]. Talanta, 2015, 144: 592-603. doi: 10.1016/j.talanta.2015.06.080

    [52] Standardization Administration. GB-T 43449—2023 Forensic sciences-Specifications for Quality Control in Toxicology Laboratory (法庭科学 实验室质量控制规范) [S]. Beijing, 2023.
    [53] Li F, Li Y. Some opinions about analytical method validation in drug research and development[J]. Chin J New Drugs (中国新药杂志), 2021, 30(10): 902-904.
    [54]

    Nielsen MKK, Johansen SS. Internal quality control samples for hair testing[J]. J Pharm Biomed Anal, 2020, 188: 113459. doi: 10.1016/j.jpba.2020.113459

    [55] China National Accreditation Service for Conformity Assessment. CNAS GL024—2018 Guidance on Quality Control Of Forensic Identify Process (鉴定过程的质量控制指南)[S]. Beijing, 2018.
    [56] The Ministry of Public Security of the People's Republic of China. GA/T 2059-2023 Forensic Sciences—Examination Methods for 10 Illicit Drugs and Metabolites including morphine in Water Samples—LC-MS (法庭科学 水样中吗啡等10种毒品和代谢物检验 液相色谱-质谱法)[S]. Beijing, 2023.
    [57]

    Xu L, Lu YT, Wu DF, et al. Application of the metal ions as potential population biomarkers for wastewater-based epidemiology: estimating tobacco consumption in Southern China[J]. Environ Geochem Health, 2023, 45(7): 5053-5065. doi: 10.1007/s10653-023-01558-z

    [58] Wang DG. Sewage Epidemiology (污水流行病学) [M]. Beijing: Science Press, 2018.
    [59] Li ZH, Hou CZ, Yuan S, et al. Research progress on methods for estimating population size by urban domestic sewage[J]. Chin J Forensic Sci (中国司法鉴定), 2023(2): 48-54.
    [60]

    Gao JF, Tscharke BJ, Choi PM, et al. Using prescription and wastewater data to estimate the correction factors of atenolol, carbamazepine, and naproxen for wastewater-based epidemiology applications[J]. Environ Sci Technol, 2021, 55(11): 7551-7560. doi: 10.1021/acs.est.1c00931

    [61]

    Huerta-Fontela M, Galceran MT, Martin-Alonso J, et al. Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain[J]. Sci Total Environ, 2008, 397(1/2/3): 31-40.

    [62]

    Postigo C, López de Alda MJ, Barceló D. Drugs of abuse and their metabolites in the Ebro River Basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation[J]. Environ Int, 2010, 36(1): 75-84. doi: 10.1016/j.envint.2009.10.004

    [63]

    Lai FY, O’Brien JW, Thai PK, et al. Cocaine, MDMA and methamphetamine residues in wastewater: consumption trends (2009-2015) in South East Queensland, Australia[J]. Sci Total Environ, 2016, 568: 803-809. doi: 10.1016/j.scitotenv.2016.05.181

    [64]

    Gracia-Lor E, Zuccato E, Castiglioni S. Refining correction factors for back-calculation of illicit drug use[J]. Sci Total Environ, 2016, 573: 1648-1659. doi: 10.1016/j.scitotenv.2016.09.179

    [65]

    Rosa Boleda MA, Teresa Galceran MA, Ventura F. Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain[J]. Water Res, 2009, 43(4): 1126-1136. doi: 10.1016/j.watres.2008.11.056

    [66]

    Yavuz-Guzel E, Atasoy A, Gören İE, et al. Impact of COVID-19 pandemic on antidepressants consumptions by wastewater analysis in Turkey[J]. Sci Total Environ, 2022, 838 (Pt 2): 155916.

    [67]

    Ceolotto N, Dollamore P, Hold A, et al. A new wastewater-based epidemiology workflow to estimate community wide non-communicable disease prevalence using pharmaceutical proxy data[J]. J Hazard Mater, 2024, 461: 132645. doi: 10.1016/j.jhazmat.2023.132645

    [68] Zhang HQ, Li H, Sun T, et al. Establishment of multi-parameter population model and its application in assessment of psychoactive substances[J]. Environ Chem (环境化学), 2023, 42(4): 1156-1164.
    [69]

    Hou CZ, Chu TT, Chen MY, et al. Application of multi-parameter population model based on endogenous population biomarkers and flow volume in wastewater epidemiology[J]. Sci Total Environ, 2021, 759: 143480. doi: 10.1016/j.scitotenv.2020.143480

    [70]

    van Rossum HH. Technical quality assurance and quality control for medical laboratories: a review and proposal of a new concept to obtain integrated and validated QA/QC plans[J]. Crit Rev Clin Lab Sci, 2022, 59(8): 586-600. doi: 10.1080/10408363.2022.2088685

    [71]

    Wilhelm A, Schoth J, Meinert-Berning C, et al. Interlaboratory comparison using inactivated SARS-CoV-2 variants as a feasible tool for quality control in COVID-19 wastewater monitoring[J]. Sci Total Environ, 2023, 903: 166540. doi: 10.1016/j.scitotenv.2023.166540

    [72]

    Ntzifa A, Lianidou E. Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis[J]. Crit Rev Clin Lab Sci, 2023, 60(8): 573-594. doi: 10.1080/10408363.2023.2230290

    [73]

    van Nuijs ALN, Lai FY, Been F, et al. Multi-year inter-laboratory exercises for the analysis of illicit drugs and metabolites in wastewater: development of a quality control system[J]. Trac Trends Anal Chem, 2018, 103: 34-43. doi: 10.1016/j.trac.2018.03.009

    [74]

    EMCDDA. Assessing Illicit Drugs in Wastewater: Advances in Wastewater-based Drug Epidemiology [M]. Luxembourg: Publications Office of the European Union, 2016: 82.

    [75] Liu PP, Qiao HW, Chen J, et al. Application of sewage drug monitoring technology in drug control practice[J]. Police Technol (警察技术), 2022(5): 14-18.
表(2)
计量
  • 文章访问数:  622
  • HTML全文浏览量:  121
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-13
  • 刊出日期:  2025-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭