高级检索

草珊瑚地上部分倍半萜苷类成分研究

李倩倩, 王楠, 罗俊

李倩倩,王楠,罗俊. 草珊瑚地上部分倍半萜苷类成分研究[J]. 中国药科大学学报,2024,55(5):639 − 644. DOI: 10.11665/j.issn.1000-5048.2024052203
引用本文: 李倩倩,王楠,罗俊. 草珊瑚地上部分倍半萜苷类成分研究[J]. 中国药科大学学报,2024,55(5):639 − 644. DOI: 10.11665/j.issn.1000-5048.2024052203
LI Qianqian, WANG Nan, LUO Jun. Sesquiterpenoid glycosides from the aerial parts of Sarcandra glabra[J]. J China Pharm Univ, 2024, 55(5): 639 − 644. DOI: 10.11665/j.issn.1000-5048.2024052203
Citation: LI Qianqian, WANG Nan, LUO Jun. Sesquiterpenoid glycosides from the aerial parts of Sarcandra glabra[J]. J China Pharm Univ, 2024, 55(5): 639 − 644. DOI: 10.11665/j.issn.1000-5048.2024052203

草珊瑚地上部分倍半萜苷类成分研究

基金项目: 国家自然科学基金项目(No.32070389);中国药科大学“双一流”项目(CPU2022QZ29)
详细信息
    通讯作者:

    罗俊: Tel:025-8327-1402 E-mail:luojun@cpu.edu.cn

  • 中图分类号: R284.2

Sesquiterpenoid glycosides from the aerial parts of Sarcandra glabra

Funds: This work was supported by the National Natural Science Foundation of China (No.32070389);and the “Double First-Class” University Project of China Pharmaceutical University (CPU2022QZ29)
  • 摘要:

    为探究金粟兰科草珊瑚属植物草珊瑚[Sarcandra glabra (Thunb.) Nakai]中的化学成分,采用硅胶柱色谱、聚酰胺柱色谱、凝胶柱色谱、制备高效液相色谱等色谱方法,从新鲜的草珊瑚地上部分的水萃取部位分离得到10个化合物,包括2个榄香烷倍半萜糖苷类化合物,6个紫罗兰酮类倍半萜糖苷以及2个酚酸类化合物。根据理化性质及核磁共振数据,以上化合物被鉴定为sarcaglaboside C (1)、sarcaglaboside D (2)、byzantionoside B (3)、lauroside E (4)、(4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one (5)、dihydrovomifoliol-O-β-D-glucopyranoside (6)、(+)-abscisyl-β-D-glucopyranoside (7)、9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one (8)、rosmarinic acid methyl ester (9)、methyl isorinate (10)。其中,化合物3~58~9首次从草珊瑚中分离得到。这些化合物的发现进一步丰富了草珊瑚植物中化合物的结构类型,并为后续药理活性研究提供了重要的物质基础。

    Abstract:

    In order to explore the chemical constituents of Sarcandra glabra (Thunb.) Nakai, 10 compounds were isolated and identified from the water extraction of fresh aerial parts of Sarcandra glabra by silica gel column chromatography, polyamide column chromatography, gel column chromatography, and preparative high-performance liquid chromatography, including 2 elemane-type sesquiterpenoid glycosides, 6 violet ketone sesquiterpenoid glycosides, and 2 phenolic acid compounds. Based on their physicochemical properties and NMR data, the above compounds have been identified as sarcaglaboside C (1), sarcaglaboside D (2), byzantionoside B (3), lauroside E (4), (4Z)-4-[(3S)-3-(β-D-glucopyranosyloxy)butylidene]-3,5,5-trimethyl-2-cyclohexen-1-one (5), dihydrovomifoliol-O-β-D-glucopyranoside (6), (+)-abscisyl-β-D-glucopyranoside (7), 9ξ-O-β-D-glucopyranosyloxy-5-megastigmen-4-one (8), rosmarinic acid methyl ester (9) and methyl isorinate (10). Among them, compounds 3 - 5 and 8 - 9 were firstly isolated from S. glabra. The discovery of these compounds further enriches the structural types of compounds in S. glabra plants and provides an important material basis for subsequent pharmacological activity research.

  • Figure  1.   Chemical structures of compounds 1-10

  • [1] Editorial Board of the Flora of China. Flora of China: Vol 20 (中国植物志: 第20卷)[M]. Beijing: Science Press, 1997: 84.
    [2]

    He RR, Wang M, Li YF, et al. Effects of Sarcandra glabra extract on immune activity in restraint stress mice[J]. China J Chin Mater Med, 2009, 34(1): 100-103.

    [3]

    Liu CP, Liu JX, Gu JY, et al. Combination effect of three main constituents from Sarcandra glabra inhibits oxidative stress in the mice following acute lung injury: a role of MAPK-NF-κB pathway[J]. Front Pharmacol, 2020, 11: 580064.

    [4]

    Yang XR, Tanaka N, Tsuji D, et al. Sarcaglabrin A, a conjugate of C15 and C10 terpenes from the aerial parts of Sarcandra glabra[J]. Tetrahedron Lett, 2020, 61(25): 151916. doi: 10.1016/j.tetlet.2020.151916

    [5]

    Zeng YL, Liu JY, Zhang Q, et al. The traditional uses, phytochemistry and pharmacology of Sarcandra glabra (thunb.) nakai, a Chinese herb with potential for development: review[J]. Front Pharmacol, 2021, 12: 652926. doi: 10.3389/fphar.2021.652926

    [6]

    Wang YY, Li QR, Chi J, et al. Sesquiterpenoids from the leaves of Sarcandra glabra[J]. Chin J Nat Med, 2022, 20(3): 215-220.

    [7]

    Wang P, Li RJ, Liu RH, et al. Sarglaperoxides A and B, sesquiterpene-normonoterpene conjugates with a peroxide bridge from the seeds of Sarcandra glabra[J]. Org Lett, 2016, 18(4): 832-835. doi: 10.1021/acs.orglett.6b00112

    [8]

    Luo J, Zhang DY, Tang PF, et al. Chemistry and bioactivity of lindenane sesquiterpenoids and their oligomers[J]. Nat Prod Rep, 2024, 41(1): 25-58. doi: 10.1039/D3NP00022B

    [9]

    Zhang DY, Xiao ZQ, Wang N, et al. Trisarcglaboids A and B, two cytotoxic lindenane sesquiterpenoid trimers with a unique polymerization mode isolated from Sarcandra glabra[J]. Bioorg Chem, 2024, 146: 107259. doi: 10.1016/j.bioorg.2024.107259

    [10]

    Chu JN, Krishnan P, Lim KH. A comprehensive review on the chemical constituents, sesquiterpenoid biosynthesis and biological activities of Sarcandra glabra[J]. Nat Prod Bioprospect, 2023, 13(1): 53. doi: 10.1007/s13659-023-00418-8

    [11]

    Li Y, Zhang DM, Li JB, et al. Hepatoprotective sesquiterpene glycosides from Sarcandra glabra[J]. J Nat Prod, 2006, 69(4): 616-620. doi: 10.1021/np050480d

    [12]

    Samy MN, Khalil HE, Sugimoto S, et al. Three new flavonoid glycosides, byzantionoside B6'-O-sulfate and xyloglucoside of (Z)-hex-3-en-1-ol from Ruellia patula[J]. Chem Pharm Bull, 2011, 59(6): 725-729. doi: 10.1248/cpb.59.725

    [13]

    Matsunami K, Takamori I, Shinzato T, et al. Radical-scavenging activities of new megastigmane glucosides from Macaranga tanarius (L.) MULL. -ARG[J]. Chem Pharm Bull, 2006, 54 (10): 1403-1407.

    [14]

    Khan MS, Nahar N, Mosihuzzaman M, et al. Neolignan and megastigmane glycosides from the leaves of Pterospermum semisagittatum[J]. Pharmazie, 2005, 60(1): 72-74.

    [15]

    Andersson R, Lundgren LN. Monoaryl and cyclohexenone glycosides from needles of Pinus sylvestris[J]. Phytochemistry, 1988, 27(2): 559-562. doi: 10.1016/0031-9422(88)83141-8

    [16]

    Koshimizu K, Inui M, Fukui H, et al. Isolation of (+)-abscisyl-β-D-glucopyranoside from immature fruit of Lupinus luteus[J]. Agric Biol Chem, 1968, 32(6): 789-791. doi: 10.1080/00021369.1968.10859139

    [17]

    Sarker SD, Dinan L, S̆ik V, et al. 9ξ-O-β-d-Glucopyranosyloxy-5-megastigmen-4-one from Lamium album[J]. Phytochemistry, 1997, 45(7): 1431-1433. doi: 10.1016/S0031-9422(97)00160-X

    [18] Wu ZJ, OuYang MA, Yang CR. Polyphenolic Constituents of Salvia przewalskii[J]. Acta Botanica Yunnanica (云南植物研究), 1999 (4): 512-516.
    [19] Zhang L, Zhou GX, Li Q, et al. Chemical composition of Isodon lophanthoides[J]. J Shenyang Pharm Univ (沈阳药科大学学报), 2006 (12): 768-770, 787.
图(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  44
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-05-23
  • 录用日期:  2024-05-24
  • 刊出日期:  2024-10-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭