高级检索

三类基于香豆素母核衍生物的合成及其抗炎活性

赵秀娟, 杨恒俐, 吴金叶, 郑晓琦, 张耀苹, 林玉萍, 虎春艳

赵秀娟,杨恒俐,吴金叶,等. 三类基于香豆素母核衍生物的合成及其抗炎活性[J]. 中国药科大学学报,2025,56(1):40 − 48. DOI: 10.11665/j.issn.1000-5048.2024072101
引用本文: 赵秀娟,杨恒俐,吴金叶,等. 三类基于香豆素母核衍生物的合成及其抗炎活性[J]. 中国药科大学学报,2025,56(1):40 − 48. DOI: 10.11665/j.issn.1000-5048.2024072101
ZHAO Xiujuan, YANG Hengli, WU Jinye, et al. Synthesis and anti-inflammatory activity of three series of coumarin-based derivatives[J]. J China Pharm Univ, 2025, 56(1): 40 − 48. DOI: 10.11665/j.issn.1000-5048.2024072101
Citation: ZHAO Xiujuan, YANG Hengli, WU Jinye, et al. Synthesis and anti-inflammatory activity of three series of coumarin-based derivatives[J]. J China Pharm Univ, 2025, 56(1): 40 − 48. DOI: 10.11665/j.issn.1000-5048.2024072101

三类基于香豆素母核衍生物的合成及其抗炎活性

基金项目: 云南省科学技术厅-云南中医药大学应用基础研究联合专项资助项目(202301AZ070001-061)
详细信息
    通讯作者:

    虎春艳: Tel:13078754255 E-mail:hchuny@126.com

  • 中图分类号: R914;R965

Synthesis and anti-inflammatory activity of three series of coumarin-based derivatives

Funds: This study was supported by the Applied Basic Research Joint Special Funds of Yunnan Provincial Science and Technology Department and Yunnan University of Chinese Medicine(202301AZ070001-061)
  • 摘要:

    以4-羟基香豆素为原料出发,合成得到3个系列共22个香豆素衍生物,其中8个衍生物未见文献报道,并采用小鼠巨噬细胞模型对其体外抗炎活性及作用机制进行初步研究。结果表明,大部分衍生物均可显著抑制促炎因子NO的生成,其中化合物2e2f2g2h2i2j4e4f的抗炎活性优于阳性对照药物地塞米松。进一步实验发现,化合物2h4f可显著抑制RAW264. 7巨噬细胞内促炎因子IL-6、TNF-α和IL-1β的生成,可作为先导化合物进行深入研究。

    Abstract:

    In this work, starting from 4-hydroxycoumarin, three series of 22 coumarin derivatives, among which 8 have not been reported in the literature, were synthesized and their in vitro anti-inflammatory activities and mechanisms of action were preliminarily investigated using mouse macrophage model. The results showed that most of the derivatives could significantly inhibit the production of pro-inflammatory factor NO, with compounds 2e, 2f, 2g, 2h, 2i, 2j, 4e, and 4f showing better anti-inflammatory activity than the positive control drug dexamethasone. Further experiments showed that compounds 2h and 4f significantly inhibited the production of pro-inflammatory factors IL-6, TNF-α and IL-1β in RAW264.7 macrophages, and could, therefore, be used as lead compounds for further studies.

  • 1.   Synthesis of coumarin-based derivatives

    Figure  1.   Inhibitory effect of compounds on LPS-induced NO expression in RAW264.7 cells ($\bar{x}\pm s$, n= 3)

    CON:Control;LPS: Lipopolysaccharide; DEX:Dexamethasone ### P<0.001 vs control group;*** P<0.001 vs LPS group

    Figure  2.   Inhibition of compounds 2h and 4f on LPS-induced pro-inflammatory factors IL-6 (A), TNF-α (B) and IL-1β (C) in RAW264.7 cells detected by ELISA ($\bar{x}\pm s $, n= 3)

    RAW264.7 cells were treated with compounds 2h and 4f (5, 10, and 20 μmol/L) for 2 h, and then with LPS for 24 h ### P<0.001 vs control group; * P<0.05,** P<0.01, *** P<0.001 vs LPS group

    Table  1   Structure and inhibitory of coumarin-based derivatives (20 μmol/L) on RAW264.7

    Compd. R Yields /% Cell viability /% Compd. R Yields /% Cell viability/%
    2a 88.5 43.7 3a 78.8 49.9
    2b 86.7 42.4 3b 71.2 45.2
    2c 90.5 48.9 3c 49.8 40.0
    2d 85.8 45.8 3d 49.0 39.5
    2e 86.4 84.8 3e 59.8 43.4
    2f 87.9 51.8 4a 61.6 34.0
    2g 91.2 57.9 4b 64.3 34.2
    2h 87.4 97.5 4c 66.1 49.8
    2i 87.9 83.1 4d 76.9 49.8
    2j 85.6 63.0 4e 70.5 65.3
    2k 87.4 36.9 4f 84.1 98.5
    下载: 导出CSV

    Table  2   In vitro anti-inflammatory activity of coumarin derivatives

    Compd.NO generation
    (IC50, μmol/L)
    Compd.NO generation
    (IC50, μmol/L)
    2e11.32 ± 1.022i7.92 ± 0.32
    2f8.22 ± 0.742j9.09 ± 0.44
    2g9.42 ± 1.524e12.16 ± 0.43
    2h6.76 ± 0.224f5.49 ± 0.44
    下载: 导出CSV
  • [1]

    Kunnumakkara AB, Sailo BL, Banik K, et al. Chronic diseases, inflammation, and spices: how are they linked[J]? J Transl Med, 2018, 16 (1): 14.

    [2] Ye CL, Chen JC, Wu LH, et al. Research progress on anti-inflammatory activity of coumarin[J]. Mod Med Health (现代医药卫生), 2022, 38(23): 4063-4065,4069.
    [3] Quan CF, Chen B, Yun WZ, et al. On the role of health education in the prevention and treatment of chronic diseases in communities[J]. Chronic Pathematology J (慢性病学杂志), 2013, 14(10): 796-797.
    [4]

    Ruan JY, Shi ZW, Cao XY, et al. Research progress on anti-inflammatory effects and related mechanisms of astragalin[J]. Int J Mol Sci, 2024, 25(8): 4476. doi: 10.3390/ijms25084476

    [5] Xing T, Wang M, Yu SY, et al. Synthesis and anti-inflammatory activity of chromone-oxadiazole(line) derivatives[J]. Chem Res Appl (化学研究与应用), 2023, 35(11): 2643-2650.
    [6]

    Li Y, Pan Z, Xiao M, et al. Advances in research on small intestinal injuries caused by nonsteroidal anti-inflammatory drugs and its prevention and treatment[J]. 2023, 54 (2): 150-158.

    [7] Lv HW, Liang HM, Zhu MD, et al. Research progress in biosynthesis-related enzymes of coumarin compounds and their bioactivities[J]. Chin J Chin Mater Med (中国中药杂志), 2024, 49(14): 3693-3705.
    [8]

    Revankar HM, Bukhari SNA, Kumar GB, et al. Coumarins scaffolds as COX inhibitors[J]. Bioorg Chem, 2017, 71: 146-159. doi: 10.1016/j.bioorg.2017.02.001

    [9]

    Hassanein EHM, Sayed AM, Hussein OE, et al. Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway[J]. Oxid Med Cell Longev, 2020, 2020: 1675957.

    [10]

    di Stasi LC. Coumarin derivatives in inflammatory bowel disease[J]. Molecules, 2021, 26(2): 422. doi: 10.3390/molecules26020422

    [11]

    Lee G, Park JS, Lee EJ, et al. Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia[J]. Phytomedicine, 2019, 55: 50-57. doi: 10.1016/j.phymed.2018.06.032

    [12] Wang MS, Jiang CX, Zhang YL. Synthesis of mono-carbonyl curcumin analogues containing nitrogen heterocyclic ring and their anti-inflammatory activities[J]. Chin Tradit Herb Drugs (中草药), 2014, 45(24): 3532-3537.
    [13]

    Khan KM, Iqbal S, Lodhi MA, et al. Biscoumarin: new class of urease inhibitors; economical synthesis and activity[J]. Bioorg Med Chem, 2004, 12(8): 1963-1968. doi: 10.1016/j.bmc.2004.01.010

    [14]

    Min SJ, Lee H, Shin MS, et al. Synthesis and biological properties of pyranocoumarin derivatives as potent anti-inflammatory agents[J]. Int J Mol Sci, 2023, 24(12): 10026. doi: 10.3390/ijms241210026

    [15]

    Antonini I, Polucci P, Magnano A, et al. Rational design, synthesis, and biological evaluation of bis(pyrimido[5, 6, 1-de]acridines) and bis(pyrazolo[3, 4, 5-kl]acridine-5-carboxamides) as new anticancer agents[J]. J Med Chem, 2004, 47(21): 5244-5250. doi: 10.1021/jm049706k

    [16]

    Rangraz Y, Vahdat SM, Khaksar S. SnO2 nanoparticles: a recyclable and heterogeneous catalyst for Pechmann condensation of coumarins and Knoevenagel condensation-Michael addition of biscoumarins[J]. Heliyon, 2023, 9(4): e15135. doi: 10.1016/j.heliyon.2023.e15135

    [17] Wang YL, Du CJ, Li J, et al. Synthesis of 4H-benzo[ g]chromene derivatives catalyzed by choline hydroxide ionic liquid[J]. Chem Res Appl (化学研究与应用), 2019, 31(8): 1552-1557.
    [18]

    Khalilzadeh M, Saberi S, Noori G, et al. Synthesis, biological assessment, and computational investigations of nifedipine and monastrol analogues as anti-leishmanial major and anti-microbial agents[J]. Mol Divers, 2023, 27(6): 2555-2575. doi: 10.1007/s11030-022-10569-4

    [19]

    Liu QY, Mu Y, An Q, et al. Total synthesis and anti-inflammatory evaluation of violacin A and its analogues[J]. Bioorg Chem, 2020, 94: 103420. doi: 10.1016/j.bioorg.2019.103420

    [20] Li RH. Observation of the clinical effect of dexamethasone combined with ambroxol in the treatment of bronchopulmonary dysplasia in premature infants[J]. Strait Pharm J (海峡药学), 2018, 30(2): 221-222.
    [21]

    Mühlemann B, Thibeault C, Hillus D, et al. Impact of dexamethasone on SARS-CoV-2 concentration kinetics and antibody response in hospitalized COVID-19 patients: results from a prospective observational study[J]. Clin Microbiol Infect, 2021, 27(10): 1520. e7-1521520. e10.

    [22]

    Guo XH, Wu WH, Ran Q, et al. Exploring the pharmacological mechanisms of the flower of Rhododendron molle in rheumatoid arthritis rats based on metabolomics integrated network pharmacology[J]. J Ethnopharmacol, 2024, 334: 118524. doi: 10.1016/j.jep.2024.118524

    [23]

    Sui YP, Huo HR, Xin JJ, et al. Antibacterial and antitumor activities of biscoumarin and dihydropyran derivatives[J]. Molecules, 2015, 20(9): 17614-17626. doi: 10.3390/molecules200917614

    [24]

    Sethiya A, Teli P, Manhas A, et al. Carbon-SO3H: an efficient catalyst for the synthesis of biscoumarin under ambient reaction conditions and their in silico studies[J]. Synth Commun, 2020, 50(16): 2440-2460. doi: 10.1080/00397911.2020.1780613

    [25]

    Ghosh R, Singha PS, Das LK, et al. Anti-inflammatory activity of natural coumarin compounds from plants of the Indo-Gangetic plain[J]. AIMS Mol Sci, 2023, 10(2): 79-98. doi: 10.3934/molsci.2023007

    [26] Yang LJ, Ding C, Gao C, et al. Biological activities of dicoumarin derivatives[J]. World Notes Antibiot (国外医药 抗生素分册), 2019, 40(1): 56-64.
    [27] Hu HL. Design, synthesis and antitumor activity test of bridged bis-1, 4- dihydropyridine derivatives (桥连双-1, 4-二氢吡啶类衍生物的设计合成及抗肿瘤活性测试研究)[D]. Shijiazhuang: Hebei University of Science and Technology, 2023.
    [28]

    Lentz F, Hemmer M, Reiling N, et al. Discovery of novel N-phenyl 1, 4-dihydropyridines with a dual mode of antimycobacterial activity[J]. Bioorg Med Chem Lett, 2016, 26(24): 5896-5898. doi: 10.1016/j.bmcl.2016.11.010

    [29]

    Fan QW, Li P, Yan H. Photophysical properties of 2, 6-unsubstituented 1, 4-dihydropyridines: experimental and theoretical studies[J]. J Photochem Photobiol A Chem, 2018, 358: 51-60. doi: 10.1016/j.jphotochem.2018.03.009

  • 期刊类型引用(1)

    1. 索传军,牌艳欣. 基于融合指标与作者贡献度的z指数优化研究. 情报理论与实践. 2022(05): 28-36 . 百度学术

    其他类型引用(1)

图(3)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 2
出版历程
  • 收稿日期:  2024-07-20
  • 修回日期:  2024-08-26
  • 录用日期:  2024-09-08
  • 刊出日期:  2025-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭