Construction and cytosolic delivery efficiency study of biomineralized albumin/siRNA nanoparticles
-
摘要:
解决小干扰RNA(siRNA)载体在胞质递送效率与生物相容性之间的矛盾是推动siRNA疗法临床转化的关键。本研究使用牛血清白蛋白(BSA)和人体必需的金属离子,构建了一种生物相容性高、可完全生物降解的siRNA递送载体MnCO3@BSA/Zn2+/siRNA(MRna)。该载体利用Zn2+和Mn2+与生物大分子(BSA和siRNA)的高亲和力,通过水相“一锅法”自组装和生物矿化反应完成了对siRNA的荷载和保护,实现了近90%的siRNA包封率。同时, MRna能够在内体环境中快速崩解使siRNA释放约55%,并通过介导“质子海绵效应”促进siRNA内体逃逸,使siRNA与溶酶体定位系数仅0.18。最终,荷载了CD47 siRNA的MRna可在mRNA和蛋白水平有效降低肿瘤细胞CD47表达,基因沉默效率达到52%,转染效果与商业试剂Lipo2000相近。本研究为siRNA递送系统的设计提供了一种更加简单、高效的策略。
Abstract:Resolving the conflict between cytoplasmic delivery efficiency and biocompatibility of small interfering RNA (siRNA) carriers is crucial for the clinical translation of siRNA therapies. In this study, we developed a highly biocompatible and fully biodegradable siRNA delivery system, MnCO3@BSA/Zn2+/siRNA (MRna), using bovine serum albumin (BSA) and essential metal ions. This carrier leverages the high affinity of Zn2+ and Mn2+ for biomolecules (BSA and siRNA) to achieve siRNA loading and protection through a water-phase “one-pot” self-assembly and biomineralization process, achieving a 90% siRNA encapsulation rate. Additionally, the nanoscale mineral particles allow rapid disintegration in the endosomal environment to release 55% of siRNA and facilitate its endosomal escape by mediating the “proton sponge effect”. Therefore, the colocalization coefficient of siRNA with the lysosome is only 0.18. Ultimately, MRna loaded with CD47 siRNA effectively reduces CD47 expression at both mRNA and protein levels in tumor cells to lower than 50% of the original, showing efficiency comparable to the commercial transfection reagent Lipo2000. Overall, this study provides a more convenient, efficient and biocompatible strategy for designing siRNA delivery systems.
-
Keywords:
- siRNA /
- Zn2+ /
- Mn2+ /
- BSA /
- self-assembly /
- biomineralization
-
-
-
[1] Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer[J]. Adv Drug Deliv Rev, 2022, 182: 114113. doi: 10.1016/j.addr.2022.114113
[2] Puri S, Mazza M, Roy G, et al. Evolution of nanomedicine formulations for targeted delivery and controlled release[J]. Adv Drug Deliv Rev, 2023, 200: 114962. doi: 10.1016/j.addr.2023.114962
[3] Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles[J]. Adv Drug Deliv Rev, 2020, 154/155: 64-78. doi: 10.1016/j.addr.2020.07.022
[4] Uchida S, Lau CYJ, Oba M, et al. Polyplex designs for improving the stability and safety of RNA therapeutics[J]. Adv Drug Deliv Rev, 2023, 199: 114972. doi: 10.1016/j.addr.2023.114972
[5] Moazzam M, Zhang MJ, Hussain A, et al. The landscape of nanoparticle-based siRNA delivery and therapeutic development[J]. Mol Ther, 2024, 32(2): 284-312. doi: 10.1016/j.ymthe.2024.01.005
[6] Ball RL, Hajj KA, Vizelman J, et al. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA[J]. Nano Lett, 2018, 18(6): 3814-3822. doi: 10.1021/acs.nanolett.8b01101
[7] Cai GL, Chen Y, Lin ST, et al. Application of dendrimer-based siRNA delivery systems[J]. J China Pharm Univ (中国药科大学学报), 50(3): 274-288. [8] Ballarín-González B, Howard KA. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions[J]. Adv Drug Deliv Rev, 2012, 64(15): 1717-1729. doi: 10.1016/j.addr.2012.07.004
[9] Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions[J]. Nat Rev Cancer, 2011, 11(1): 59-67. doi: 10.1038/nrc2966
[10] Zuckerman JE, Gritli I, Tolcher A, et al. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA[J]. Proc Natl Acad Sci USA, 2014, 111(31): 11449-11454. doi: 10.1073/pnas.1411393111
[11] Peer D, Lieberman J. Special delivery: targeted therapy with small RNAs[J]. Gene Ther, 2011, 18(12): 1127-1133. doi: 10.1038/gt.2011.56
[12] Guo S, Li CH, Wang CR, et al. pH-Responsive polymer boosts cytosolic siRNA release for retinal neovascularization therapy[J]. Acta Pharm Sin B, 2024, 14(2): 781-794. doi: 10.1016/j.apsb.2023.09.001
[13] Choi HY, Lee TJ, Yang GM, et al. Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells[J]. J Control Release, 2016, 235: 222-235. doi: 10.1016/j.jconrel.2016.06.007
[14] Karlsson J, Tzeng SY, Hemmati S, et al. Photocrosslinked bioreducible polymeric nanoparticles for enhanced systemic siRNA delivery as cancer therapy[J]. Adv Funct Mater, 2021, 31(17): 2009768. doi: 10.1002/adfm.202009768
[15] Zou Z, He LB, Deng XX, et al. Zn2+-coordination-driven RNA assembly with retained integrity and biological functions[J]. Angew Chem Int Ed, 2021, 60(42): 22970-22976. doi: 10.1002/anie.202110404
[16] Cen D, Ge QW, Xie CK, et al. ZnS@BSA nanoclusters potentiate efficacy of cancer immunotherapy[J]. Adv Mater, 2021, 33(49): e2104037. doi: 10.1002/adma.202104037
[17] Huang SD, Gao Y, Li HY, et al. Manganese@Albumin nano complex and its assembled nanowire activate TLR4-dependent signaling cascades of macrophages[J]. Adv Mater, 2024, 36(5): e2310979. doi: 10.1002/adma.202310979
[18] Fan N, Chen KP, Zhu R, et al. Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants[J]. Sci Adv, 2022, 8(51): eabq3500. doi: 10.1126/sciadv.abq3500
[19] Gao ZL, Xu W, Zheng SJ, et al. Orchestrated cytosolic delivery of antigen and adjuvant by manganese ion-coordinated nanovaccine for enhanced cancer immunotherapy[J]. Nano Lett, 2023, 23(5): 1904-1913. doi: 10.1021/acs.nanolett.2c04970
[20] Wen H, Yin YD, Huang C, et al. Encapsulation of RNA by negatively charged human serum albumin via physical interactions[J]. Sci China Chem, 2017, 60(1): 130-135. doi: 10.1007/s11426-016-0094-8