• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

天冬氨酸/水滑石复合材料合成、表征与分子动力学模拟

沈彦, 潘国祥, 徐博, 裘城聪, 徐敏虹

沈彦,潘国祥,徐博,等. 天冬氨酸/水滑石复合材料合成、表征与分子动力学模拟[J]. 中国药科大学学报,2025,56(3):329 − 335. DOI: 10.11665/j.issn.1000-5048.2024072801
引用本文: 沈彦,潘国祥,徐博,等. 天冬氨酸/水滑石复合材料合成、表征与分子动力学模拟[J]. 中国药科大学学报,2025,56(3):329 − 335. DOI: 10.11665/j.issn.1000-5048.2024072801
SHEN Yan, PAN Guoxiang, XU Bo, et al. Synthesis, characterization and molecular dynamics simulation of layered double hydroxides intercalated with aspartic acid[J]. J China Pharm Univ, 2025, 56(3): 329 − 335. DOI: 10.11665/j.issn.1000-5048.2024072801
Citation: SHEN Yan, PAN Guoxiang, XU Bo, et al. Synthesis, characterization and molecular dynamics simulation of layered double hydroxides intercalated with aspartic acid[J]. J China Pharm Univ, 2025, 56(3): 329 − 335. DOI: 10.11665/j.issn.1000-5048.2024072801

天冬氨酸/水滑石复合材料合成、表征与分子动力学模拟

基金项目: 

undefined

浙江省自然科学基金项目(LY21E040001);浙江省尖兵领雁研发攻关计划项目(2023C01112)

详细信息
    通讯作者:

    潘国祥: Tel:0572-2322758 E-mail:pgxzjut@163.com

  • 中图分类号: R912

Synthesis, characterization and molecular dynamics simulation of layered double hydroxides intercalated with aspartic acid

Funds: 

This study was supported by the Natural Science Foundation of Zhejiang Province (LY21E040001); and Zhejiang Provincial Leading Project for Leading Geese Plan(2023C01112)

undefined

  • 摘要:

    传统实验手段在水滑石超分子结构与水合膨胀性能研究上存在不足,无法得知层间阴离子排布形态以及结构水分子的信息。采用共沉淀法和离子交换法两种方法合成了天冬氨酸插层镁铝水滑石,用X射线粉末衍射、差热分析、红外光谱表征了水滑石前驱体及其与天冬氨酸插层复合材料的结构,并用Materials Studio软件分子动力学模拟方法对复合材料的微观结构和水合特性进行研究。制得的复合材料层状结构规整、晶相单一,天冬氨酸插层后其层间距从0.84 nm增至1.13~1.17 nm;插层后天冬氨酸的热分解温度由249 ℃升高至334 ℃,其热稳定性大大提高。通过复合材料结构分子动力学模拟得到水滑石层间阴离子的分布状态以及水分子的结合状况。实验所得插层后水滑石层间距与分子动力学模拟结果水分子与天冬氨酸比(Nw)为3~4时接近;水滑石层间水分子数量越多,层间距越大;水合能逐渐呈增大趋势,且趋于一定值;水合过程层板与阴离子间氢键数量减少,而层板与水分子间氢键增多,总氢键数逐渐增多。通过模拟所得结果与实验结论接近,可为水滑石基药物复合材料设计合成奠定基础。

    Abstract:

    Traditional experimental methods are insufficient in the study of layered double hydroxides (LDHs) supramolecular structure and hydration expansion performance, and information on interlayer anionic arrangement and structural water molecules cannot be obtained. Aspartic acid intercalated magnesium aluminum hydrotalcite was synthesized using coprecipitation and ion exchange. The structure of hydrotalcite precursor and its aspartic acid composite materials was characterized by X-ray powder diffraction, differential thermal analysis, and infrared spectroscopy, and Materials Studio software was used to simulate the molecular dynamics of microstructure and hydration properties of LDHs intercalated with the aspartic acid drug. The prepared composite material had a regular layered structure and a single crystal phase. After intercalation with aspartic acid, the interlayer spacing increased from 0.84 nm to 1.13−1.17 nm; after intercalation, the thermal decomposition temperature of aspartic acid increased from 249 °C to 334 °C, greatly improving its thermal stability. The interlayer spacing of the intercalated hydrotalcite obtained from the experiment was close to the molecular dynamics simulation results when Nw=3−4. As more water molecules were inserted between the layers, the greater the interlayer distance became. Hydration energy increased gradually and tended to a certain value. The total number of hydrogen bonds increased gradually, the hydrogen bonds between laminates and anions decreased gradually, but the hydrogen bonds between laminates and water molecules increased gradually. The simulation results are close to the experimental results, which can lay a foundation for the design and synthesis of LDHs-based drug composites.

  • Figure  1.   Initial layer model of magnesium aluminum layered double hydroxides (LDHs)

    Green ball: Mg; Peach ball:Al; Red ball:O;White ball:H

    Figure  2.   Picture of chloride intercalated magnesium aluminum layered double hydroxides (Mg3Al-Cl-LDHs) structure optimized

    A:Side view; B:Top view

    Figure  3.   NPT dynamic model of aspartic acid intercalated layered double hydroxides (Mg3Al-Asp-LDHs) after simulation

    Figure  4.   XRD patterns of LDHs-Asp(co) (a),LDHs-Asp(ie) (b), and LDHs-NO3 (c)

    Figure  5.   DTA patterns of LDHs-Asp(ie) (a), LDHs-Asp(co) (b), Asp (c), and LDHs-NO3 (d)

    Figure  6.   FTIR patterns of LDHs-NO3 (a), LDHs-Asp(ie) (b), LDHs-Asp(co) (c), and Asp (d)

    Figure  7.   Molecular dynamic simulation results of Mg3Al-Asp-nH2O-LDHs models

    Green ball: Mg; Peach ball:Al; Red ball:O;White ball:H; Blue ball:N

    Figure  8.   UHNw curve of Mg3Al-Asp-nH2O-LDHs

    Figure  9.   Analysis of hydrogen bond in Mg3Al-Asp-nH2O-LDHs model

  • [1] Li X, Qin J, Lv Q, et al. Effect of α/γ-alumina on structure and properties of synthesized Mg-Al hydrotalcite[J]. Inorg Chem Ind(无机盐工业), 2022, 54(12): 51-59.
    [2] Lv P, Shi CH, Li W, et al. Controllable synthesis and characterization of thermal stabilizer Mg-Al-LDHs[J]. Inorg Chem Ind(无机盐工业), 2019, 51(6): 29-33,71.
    [3] Zhao Y, Qiu XL, Wand J, et al. Preparation and gas separation performance of aminated sodium lignosulfonate intercalated hydrotalcite/pebax mixed matrix membrane[J]. New Chem Mater(化工新型材料), 2024, 52(3): 102-108.
    [4] Shi JJ, Shi ZH, Li HZ. Preparation of magnesium aluminium-type hydrotalcite compounds intercalated with phosphorus flame retardants and their flame retardant application in thermoplastic polyurethane[J]. Chin J Appl Chem(应用化学), 2023, 40(9): 1288-1301.
    [5] Liu P, Meng Y. Study on flame retardancy of SDBS intercalated hydrotalcite modified epoxy resin[J]. New Build Mater(新型建筑材料), 2022, 49(7): 144-147,155.
    [6] Chen SJ, Ma ZL, Shi JA, et al. Preparation and application of hydrotalctitel pectin film intercalated with lactate[J]. Packaging Eng(包装工程), 2022, 43(11): 99-106.
    [7] Hu S, Fang JH, Fu YY, et al. Preparation, structural characteristics and drug release properties of ibuprofen intercalated Mg-Al hydrotalcite[J]. Non Metal Mine(非金属矿), 2022, 45(2): 28-32, 37.
    [8]

    Wang XH, Xu JX, Tan QP. Effect of nitrite intercalated Mg−Al layered double hydroxides on mortar durability under Cl and SO42−coexisting environment[J]. J Cent South Univ, 2022, 29(2): 546-560. doi: 10.1007/s11771-022-4892-1

    [9] Sun HF, Qin JR, Lan XW, et al. Intercalated structured nickel-based hydrotalcite nanocatalyst for diphenylacetylene semihydrogenation[J]. Sci Sin Chim(中国科学 化学), 2021, 51(9): 1303-1310.
    [10] Kong LQ, Narkhede N, Liu RQ, et al. Preparation of Cu/ZnO/Al2O3 catalyst by intercalated hydrotalcite precursor and its catalytic performance in methanol synthesis[J]. J Fuel Chem Technol(燃料化学学报), 2021, 49(4): 513-521.
    [11] Zhu M, Zhu JZ, Shi JY, et al. Study on flame-retardant poplar veneer modified by polyvinyl alcohol phosphate intercalated hydrotalcite[J]. Chine Wood Sci Technol(木材科学与技术), 2021, 35(3): 52-58.
    [12] Li XM, Zhang N, Liu ZY, et al. Study on synthesis and properties of butyl stannate intercalated hydrotalcite-like compound for PVC[J]. China Plast(中国塑料), 2021, 35(3): 38-43.
    [13] Hu SX, Li L, Yang JH, et al. Preparations and electrocatalytic ethanol properties of palladium intercalated hydrotalcite[J]. J Electrochem(电化学), 2021, 27(1): 100-107.
    [14] Zhu YQ, Zhao XJ, Zhong Y, et al. Theoretical study on the construction and characteristics of the host-guest intercalated structure of layered double hydroxides[J]. Chem J Chin Univ(高等学校化学学报), 2020, 41(11): 2287-2305.
    [15] Pan GX, Ni ZM, Wang F, et al.Molecular dynamics simulation on structure, hydrogen-bond and hydration properties of diflunisal intercalated layered double hydroxides[J]. Acta Phys Chim Sin(物理化学学报), 2009, 25 (2): 223-228.
    [16] Ni ZM, Li Y, Yao P, et al.Molecular dynamics simulation on hydration of captopril inercalated Zn/Al hydrotalcite[J], Rare Metal Mater Eng(稀有金属材料与工程), 2012, 41 (S3): 1-4.
    [17] Zhao W, Li YH, Chen YN. Preparation and properties of hydrotalcite piled aspirin[J]. Sci Technol Chem Ind(化工科技), 2020, 28(5): 22-25.
    [18]

    Greenwell HC, Jones W, Coveney PV, et al. On the application of computer simulation techniques to anionic and cationic clays: a materials chemistry perspective[J]. J Mater Chem, 2006, 16(8): 708-723. doi: 10.1039/B506932G

    [19]

    Kumar PP, Kalinichev AG, Kirkpatrick RJ. Molecular dynamics simulation of the energetics and structure of layered double hydroxides intercalated with carboxylic acids[J]. J Phys Chem C, 2007, 111(36): 13517-13523. doi: 10.1021/jp0732054

    [20]

    Toth R, Ferrone M, Miertus S, et al. Structure and energetics of biocompatible polymer nanocomposite systems: a molecular dynamics study[J]. Biomacromolecules, 2006, 7(6): 1714-1719. doi: 10.1021/bm050937y

    [21]

    Wang JW, Kalinichev AG, Molecular modeling of the structure and energetics of hydrotalcite hydration[J]. J Chem Mater, 2001, 13(1): 145-150.

    [22]

    Padma Kumar P, Kalinichev AG, James Kirkpatrick R. Hydration, swelling, interlayer structure, and hydrogen bonding in organolayered double hydroxides: insights from molecular dynamics simulation of citrate-intercalated hydrotalcite[J]. J Phys Chem B, 2006, 110(9): 3841-3844. doi: 10.1021/jp057069j

    [23] Quan ZL, Zhang DM, Hou WG. Preparation and inhibition performance of aspartic acid intercalated ZnAl layered double hydroxides[J]. Corros Sci Protect Technol(腐蚀科学与防护技术), 2011, 23(2): 151-154.
    [24] Li Y, Ni ZM, Xu Q, et al. Molecular dynamics simulation of histidine intercalated Zn/Al hydrotalcite and releasing course[J]. J Chin Ceramic Soc(硅酸盐学报), 2011, 39(1): 63-68.
图(9)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  5
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-27
  • 修回日期:  2025-01-19
  • 录用日期:  2025-02-27
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭