• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

UHPLC-Q-Orbitrap/MS技术鉴定阿哌沙班片的有关物质

吕广云, 姚奕然, 徐丹洋, 王舒, 肖蓓

吕广云,姚奕然,徐丹洋,等. UHPLC-Q-Orbitrap/MS技术鉴定阿哌沙班片的有关物质[J]. 中国药科大学学报,2025,56(3):341 − 349. DOI: 10.11665/j.issn.1000-5048.2024081401
引用本文: 吕广云,姚奕然,徐丹洋,等. UHPLC-Q-Orbitrap/MS技术鉴定阿哌沙班片的有关物质[J]. 中国药科大学学报,2025,56(3):341 − 349. DOI: 10.11665/j.issn.1000-5048.2024081401
LYU Guangyun, YAO Yiran, XU Danyang, et al. Identification of related substances in apixaban tablets by UHPLC-Q-Orbitrap/MS[J]. J China Pharm Univ, 2025, 56(3): 341 − 349. DOI: 10.11665/j.issn.1000-5048.2024081401
Citation: LYU Guangyun, YAO Yiran, XU Danyang, et al. Identification of related substances in apixaban tablets by UHPLC-Q-Orbitrap/MS[J]. J China Pharm Univ, 2025, 56(3): 341 − 349. DOI: 10.11665/j.issn.1000-5048.2024081401

UHPLC-Q-Orbitrap/MS技术鉴定阿哌沙班片的有关物质

基金项目: 

undefined

国家药品监督管理局化学药品杂质谱研究重点实验室开放课题(NMPA-KLIPCD-2023-03)

详细信息
    通讯作者:

    肖蓓: Tel:0513-51001919 E-mail:xbybh@126.com

  • 中图分类号: R917

Identification of related substances in apixaban tablets by UHPLC-Q-Orbitrap/MS

Funds: 

This study was supported by the Open Project of the National Medical Products Administration Key Laboratory for Impurity Profile of Chemical Drugs (NMPA-KLIPCD-2023-03)

undefined

  • 摘要:

    采用超高效液相色谱-四极杆-静电场轨道阱高分辨质谱(UHPLC-Q-Orbitrap/MS)技术研究阿哌沙班片中的有关物质。采用Waters Xbridge C18(250 mm×4.6 mm,5 μm)色谱柱,以30 mmol/L醋酸铵缓冲液(pH4.50)-乙腈为流动相梯度洗脱,对阿哌沙班片有关物质进行分离;电喷雾正离子化-四极杆-静电场轨道阱串联质谱法测定各有关物质的母离子及碎片离子的准确质荷比和元素组成,并解析鉴定有关物质的结构。在所建立的条件下,阿哌沙班与其有关物质分离良好,检测并鉴定出阿哌沙班片及其强制降解试验样品中30个主要有关物质,其中11个为已知杂质,其余19个为新鉴定的未知有关物质。研究结果可为阿哌沙班的生产工艺控制和质量保障提供参考依据。

    Abstract:

    A UHPLC-Q-Orbitrap/MS method was developed to identify the related substances in apixaban tablets. Complete separation was accomplished with a Waters Xbridge C18 (250 mm×4.6 mm, 5 μm) column by linear gradient elution using a mobile phase consisting of 30 mmol/L ammonium acetate buffer solution (pH 4.50) and acetonitrile. The related substances were successfully characterized through the accurate mass and elemental composition of the parent ions and their product ions determined by electrospray positive ionization high-resolution Q-Orbitrap/MS methods. Under the established analytical condition, apixaban and its related substances were well separated, and 30 related substances were detected and identified by hyphenated techniques in apixaban tablets and their stressed samples. Among them, 11 were known impurities and the rest 19 were unknown related substances identified for the first time in this study. The results obtained are valuable for apixaban manufacturing process optimization and quality control.

  • Figure  1.   Chemical structure of apixaban

    Figure  2.   HPLC-UV chromatograms of representative samples of apixaban tablets

    a: Producer g; b: Producer h; c: Producer j; d: Producer k; e: Producer q; f: Producer Pfizer

    Figure  3.   HPLC-UV chromatograms of apixaban stress solutions

    a: Normal; b: 0.1% Reference; c: Alkaline; d: Oxidation; e: Acid; f: Wet heat; g: Dry heat; h: Dry light; i: Wet light; j: Blank

    Figure  4.   Chemical structures of apixaban and its related substances 130

    Figure  5.   MS/MS fragmentation pathways of [M+H]+ ions of apixaban

    Figure  6.   MS/MS fragmentation pathways of [M+H]+ ion of related substances 12, 9 and 13

    Figure  7.   Generation of the related substance in apixaban tablets

    Table  1   Related substances identified in apixaban tablets and its stressed samples by UHPLC-Q-Orbitrap/MS

    No. tR/min Parent ion(m/z) Ion formula Dif.(×10-6) Product ions(m/z) Origins
    1 4.957 354.15570 C18H20N5O3+ −1.03 337.13354,309.13425,281.12778,253.13300,217.09698,203.11769,191.11775,130.06525,93.04529,79.01844 Dr
    2 5.695 478.20804 C25H28N5O5+ −0.96 461.18130,417.19214,288.09775,271.07101,244.10800,215.08163,199.08658,184.06310 Dr
    3 5.872 287.11365 C14H15N4O3+ −0.76 270.08600,242.09224,227.06659,215.08138,199.08670,184.06326,172.06281,125.05952,95.04979 Dr
    4 7.283 479.19235 C25H27N4O6+ −0.33 461.18173,435.20178,417.15460,405.15543,373.16574,361.16571,238.09680,199.08669,184.06293 Dr
    5/A 7.993 479.19217 C25H27N4O6+ −0.71 461.18179,435.20258,417.15460,405.15564,379.14029,373.16577,361.16562,330.14725,238.09718,199.08675,184.06303 Pr/Dr
    6/B 8.658 461.18112 C25H25N4O5+ −1.79 443.16852,417.19180,374.17343,282.12360,241.06036,199.08653,184.06300,144.06816 Pr/Dr
    7/C 9.222 446.18121 C24H24N5O4+ −2.39 429.15308,401.16098,282.12350,227.04492,185.07085,171.05521,121.03982 Pr/Dr
    8 10.022 560.25038 C30H34N5O6+ 0.03 505.21857,487.20856,470.18341,416.17093,387.18143,348.12958,254.12752,199.08675,82.06573 Pr
    9 11.188 458.18210 C25H24N5O4+ −0.40 430.18930,268.07141,242.09233,227.06895,199.07393,109.04006 Pr
    10 11.327 476.19275 C25H26N5O5+ −0.20 459.16357,430.18747,413.16397,371.15039,298.11911,252.11378,241.06096,224.11874,199.08667,185.07103,173.10721,135.05548,125.05988,95.04975 Pr
    11/D 11.527 477.22354 C25H29N6O4+ −1.97 460.19757,432.20313,416.17123,404.17154,299.15009,282.12308,238.09738,219.13611,199.08649,185.07111,130.06505,100.07608 Pr
    12 11.902 492.18680 C25H26N5O6+ −1.95 475.16025,447.19019,418.15030,404.13452,377.14792,241.06052,199.08667,185.07072 Dr
    13 12.400 515.20319 C27H27N6O5+ −1.08 488.19284,404.17267,309.13464,241.06091,199.08658,185.07127,125.06004,84.04510 Pr
    14 13.348 492.18741 C25H26N5O6+ −0.71 475.16023,447.19057,418.15032,404.13442,377.14790,241.06049,199.08659,185.07112 Dr
    15 13.825 492.18732 C25H26N5O6+ −0.90 475.16064,447.19012,418.15032,404.13452,377.14788,241.06052,199.08647,185.07079 Dr
    16 13.897 430.18738 C24H24N5O3+ 0.03 413.15930,385.16495,357.17020,282.12396,254.12938,211.05048,169.07608,155.06036,105.04514,95.04968 Pr
    17/E 14.178 478.20786 C25H28N5O5+ −1.34 460.19757,432.20282,416.17139,404.17142,399.14438,377.14865,333.13385,300.13397,238.09715,199.08658,185.07085,101.06010 Pr/Dr
    API 14.723 460.19699 C25H26N5O4+ −2.04 443.16870,415.17426,374.17432,282.12344,241.06059,199.08643,185.07082,135.05528,95.04959
    18/F 15.263 458.18124 C25H24N5O4+ −2.26 441.15524,415.17575,385.16565,372.15762,341.13919,318.08701,277.10870,249.11378,221.08209 Pr
    19 16.295 507.19867 C25H27N6O6+ 0.02 477.20041,404.17062,390.15579,373.12817,241.06075,199.08659,185.07086,95.04922 Dr
    20 16.297 460.19754 C25H26N5O4+ −0.85 443.16888,415.17413,374.17529,282.12350,241.06078,199.08655,185.07097,135.05547,95.04964 Pr
    21/G 17.203 474.21265 C26H28N5O4+ −1.97 457.18423,429.19089,296.13904,241.06065,199.08646,185.07086,156.06802,125.05978,95.04958 Pr
    22 18.140 474.21304 C26H28N5O4+ −1.13 457.18332,429.19083,296.13912,241.06070,199.08650,185.07088,156.06813,125.05976,95.04971 Pr
    23/H 18.470 474.21252 C26H28N5O4+ −2.23 457.18393,429.19186,296.13913,241.06062,199.08644,185.07079,156.06807,125.05978,95.04958 Pr
    24 18.692 474.21338 C26H28N5O4+ −0.43 457.18344,429.18976,296.13916,241.06065,199.08646,185.07080,156.06816,125.05990,95.04955 Pr
    25/I 18.790 464.14771 C24H23ClN5O3+ −1.48 447.12000,419.12436,282.12338,245.01115,203.03696,189.02141,168.06822,139.00574 Pr
    26 19.500 512.16968 C25H27ClN5O5+ 0.30 494.15887,466.16422,450.13263,414.15585,391.13983,334.09528,272.05835,225.06609,199.08661,185.07097,101.06019 Dr
    27/K 21.378 475.19714 C26H27N4O5+ −0.95 461.18185,443.16876,415.17664,282.12375,241.06076,199.08664,185.07101,172.07568,135.05542,125.05988,95.04966 Pr
    28 21.835 546.13098 C25H26Cl2N5O5+ 0.79 528.12018,500.12521,484.09381,446.07825,389.08011,268.00394,225.06563,199.08675,185.07100,101.06020 Dr
    29/L 24.480 489.21268 C27H29N4O5+ −1.16 461.18170,443.16855,417.19278,374.17368,282.12366,241.06078,227.11781,199.08656,185.07088,156.06808,135.05539,125.05988,95.04965 Pr
    30 25.358 387.15508 C20H23N2O6+ 0.02 279.64178,212.84285,147.06519,129.05489,119.04932,105.07024 Pr
    Pr: Process related substance; Dr: Degradation related substance
    下载: 导出CSV
  • [1]

    Raynor A, Lunte K, Gaaloul M, et al. Stability of rivaroxaban and apixaban anti-xa activities in whole blood samples: a French bicentric study[J]. Thromb Haemost, 2023, 123(5): 565-567. doi: 10.1055/s-0043-1763254

    [2]

    Wasan SM, Feland N, Grant R, et al. Validation of apixaban anti-factor Xa assay and impact of body weight[J]. Thromb Res, 2019, 182: 51-55. doi: 10.1016/j.thromres.2019.08.014

    [3]

    Byon W, Garonzik S, Boyd RA, et al. Apixaban: a clinical pharmacokinetic and pharmacodynamic review[J]. Clin Pharmacokinet, 2019, 58(10): 1265-1279. doi: 10.1007/s40262-019-00775-z

    [4]

    Cortese F, Scicchitano P, Gesualdo M, et al. Apixaban: effective and safe in preventing thromboembolic events in patients with atrial fibrillation and renal failure[J]. Curr Med Chem, 2017, 24(34): 3813-3827.

    [5]

    Subramanian VB, Katari NK, Dongala T, et al. Stability-indicating RP-HPLC method development and validation for determination of nine impurities in apixaban tablet dosage forms. Robustness study by quality by design approach[J]. Biomed Chromatogr, 2020, 34(1): e4719. doi: 10.1002/bmc.4719

    [6]

    Surukonti SR, Surendrababu MS. Understanding the stress testing characteristics of apixaban, structural elucidation of a novel degradation impurity, and stability-indicating method development for quantification of related substances[J]. J AOAC Int, 2024, 107(1): 22-30. doi: 10.1093/jaoacint/qsad106

    [7]

    Kilari J, Brahman PK. Using the AQbD approach, development and validation of a simple, rapid stability indicating chromatographic method for quantification of related impurities of apixaban[J]. J Chromatogr Sci, 2024, 62(10): 978-989. doi: 10.1093/chromsci/bmad065

    [8] Nie ZL, Guo ZY, Hu YB, et al. Quantitative determination of eight known kinds of impurities in Apixaban by HPLC[J]. China Meas Test (中国测试), 2017, 43(3): 36-42.
    [9] Sun YY, Zhao YL, Duan MM, et al. Determination of related substances in apixaban by HPLC[J]. J Shenyang Pharm Univ (沈阳药科大学学报), 2017, 34(1): 37-42.
    [10] Wang P, Lin LH. Improvement on synthesis process of apixaban[J]. Chin J Mod Appl Pharm (中国现代应用药学), 2019, 36(14): 1783-1786.
    [11] Zheng QK, Shen SS, Zhang JM, et al. The process research of apixaban[J]. Chin J Med Chem(中国药物化学杂志), 2022, 32(03): 199-203.
    [12] Xiang CH. A study on the process synthesis of the anticoagulant drug: apixaban(抗凝血剂阿哌沙班的合成工艺研究)[D]. Harbin: Northeast Agricultural University(东北农业大学), 2014.
    [13] Zhu S, Jiang J, Liu Y, et al. Structural identification of the related substances of lorazepam tablets by LC-MS[J]. J China Pharm Univ (中国药科大学学报), 2021, 52(5): 555-565.
    [14] Fu XT, Chen MH, Yan F, et al. Identification of the related substances of tacrolimus by LC-MS[J]. J China Pharm Univ (中国药科大学学报), 2022, 53(5): 563-576.
图(7)  /  表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-13
  • 修回日期:  2024-09-08
  • 录用日期:  2024-09-24
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭