Research progress on the mechanism of mitochondria-associated endoplasmic reticulum membranes in diabetic kidney disease
-
摘要:
糖尿病肾病(diabetic kidney disease,DKD)是糖尿病的主要微血管并发症之一,随着糖尿病患病率持续攀升,其已成为终末期肾病的重要诱因,严重威胁患者生命健康并加剧社会医疗负担。线粒体与内质网(endoplasmic reticulum,ER)的功能障碍在DKD进展中起关键作用,而线粒体内质网相关膜(mitochondria-associated endoplasmic reticulum membrane,MAM)作为二者动态交互的核心枢纽,通过调控钙稳态、脂质代谢、线粒体动力学及细胞凋亡等过程影响DKD病理进程。本文系统综述MAM在DKD发生发展中的多重分子机制,揭示其通过调节钙离子(Ca2+)平衡、葡萄糖代谢、炎症反应及自噬等途径参与肾损伤的精细调控网络,并阐明MAM功能失调如何驱动DKD向终末期肾病转化,深入探讨MAM相关生物标志物在早期诊断中的潜力,以及靶向MAM的药物干预、基因修复等创新治疗策略,为DKD的基础机制研究与临床实践衔接提供理论参考。
Abstract:Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes. With the increasing prevalence of diabetes, it has become an important cause of end-stage renal disease, which seriously threatens the life and health of patients and aggravates the medical burden of society. The dysfunction of mitochondria and endoplasmic reticulum (ER) plays a key role in the progression of DKD, and the mitochondria-associated endoplasmic reticulum membrane (MAM) is the core hub of the dynamic interaction between the two. Mitochondrial dynamics and apoptosis affect the pathological process of DKD. This article systematically reviews the multiple molecular mechanisms of MAM in the occurrence and development of DKD, reveals its involvement in the fine regulatory network of kidney injury by regulating calcium ion (Ca2+) balance, glucose metabolism, inflammatory response and autophagy, and clarifies how MAM dysfunction drives the transformation of DKD into end-stage renal disease. In addition, this article deeply explores the potential of MAM-related biomarkers in early diagnosis, as well as innovative therapeutic strategies such as drug intervention and gene repair targeting MAM, which provides theoretical references for basic mechanism research and clinical practice of DKD.
-
-
图 1 线粒体内质网相关膜的分子组成及相关功能
MAM:线粒体内质网相关膜;MNF1:肌细胞核因子1;MNF2:肌细胞核因子2;VAPB:囊泡相关膜蛋白B;PTPIP51:蛋白酪氨酸磷酸酶相互作用蛋白51;TOM40:外膜转位酶40;FIS1:线粒体分裂蛋白1;BAP31:B细胞受体相关蛋白31;IP3R:三磷酸肌醇受体;GRP75:葡萄糖调节蛋白75;VDAC1:电压依赖性阴离子通道1;MCU:线粒体钙单向转运体;OPR5:寡肽转运蛋白5;OPR8:寡肽转运蛋白8;MITOL:线粒体泛素连接酶;MOSPD2:运动精子域包含蛋白2;GRP78:葡萄糖调节蛋白78;WASF3:WASP家族成员3;OPA1:视神经萎缩蛋白1;DRP1:动力相关蛋白1;MFF:线粒体分裂因子;DsbA-L:二硫键氧化还原酶A样蛋白;PACS2:磷酸酶和张力蛋白同源物诱导激酶2;mTORC1:哺乳动物雷帕霉素靶蛋白复合物1;PP2A:蛋白磷酸酶2A;NLRP3:NOD样受体家族含pyrin结构域蛋白3;DAMPs:损伤相关分子模式;TXNIP:硫氧还蛋白相互作用蛋白;BCL2:B细胞淋巴瘤2;CANX:钙联蛋白
表 1 线粒体内质网相关膜在糖尿病肾病中的相关早期标志物及治疗策略
功 能 分 类 作 用 早期标志物 线粒体内质网膜相关蛋白 肌醇1,4,5-三磷酸受体、电压依赖性阴离子通道等显著变化 钙稳态 钙浓度的异常变化是线粒体内质网相关膜功能失调的早期信号 脂质代谢与氧化应激 血液、尿液中脂肪酸等标志物间接反映线粒体内质网相关膜功能 治疗策略 药物干预 熊去氧胆酸:减轻内质网应激 钙通道调节剂:恢复钙稳态 抗氧化剂:减缓氧化应激 脂质代谢调节剂:改善线粒体内质网相关膜功能 基因修复 修复线粒体内质网相关膜相关蛋白基因,改善功能失调 细胞干预 激活自噬途径,清除损伤细胞器 -
[1] Chen X, Jin L. Research progress on sumoylation in type 2 diabetes mellitus[J]. J China Pharm Univ (中国药科大学学报), 2025, 56(1): 125-131. [2] Perreault L, Skyler JS, Rosenstock J. Novel therapies with precision mechanisms for type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2021, 17(6): 364-377. doi: 10.1038/s41574-021-00489-y
[3] Gupta S, Dominguez M, Golestaneh L. Diabetic kidney disease: an update[J]. Med Clin North Am, 2023, 107(4): 689-705. doi: 10.1016/j.mcna.2023.03.004
[4] Jha JC, Banal C, Chow BSM, et al. Diabetes and kidney disease: role of oxidative stress[J]. Antioxid Redox Signal, 2016, 25(12): 657-684. doi: 10.1089/ars.2016.6664
[5] Perez-Leanos CA, Romero-Campos HE, Dupont G, et al. Reduction of ER-mitochondria distance: a key feature in Alzheimer’s and Parkinson’s disease, and during cancer treatment[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 4412-4415.
[6] Hayashi T, Rizzuto R, Hajnoczky G, et al. MAM: more than just a housekeeper[J]. Trends Cell Biol, 2009, 19(2): 81-88. doi: 10.1016/j.tcb.2008.12.002
[7] Huang SZ, Wang SZ, Xie Y. Advances in molecular mechanisms of organelle interaction and their role in disease development[J]. J China Pharm Univ (中国药科大学学报), 2019, 50(4): 389-396. [8] Ahmad AA, Draves SO, Rosca M. Mitochondria in diabetic kidney disease[J]. Cells, 2021, 10(11): 2945. doi: 10.3390/cells10112945
[9] Xie YF, Jing E, Cai H, et al. Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells[J]. Kidney Int, 2022, 102(2): 293-306. doi: 10.1016/j.kint.2022.02.038
[10] Liu YT, Zhang H, Duan SB, et al. Mitofusin2 ameliorated endoplasmic reticulum stress and mitochondrial reactive oxygen species through maintaining mitochondria-associated endoplasmic reticulum membrane integrity in cisplatin-induced acute kidney injury[J]. Antioxid Redox Signal, 2024, 40(1/2/3): 16-39.
[11] Hu YQ, Chen H, Zhang LY, et al. The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses[J]. Autophagy, 2021, 17(5): 1142-1156. doi: 10.1080/15548627.2020.1749490
[12] Liu JX, Wang LP, Ge LD, et al. Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus[J]. Food Chem Toxicol, 2022, 161: 112831. doi: 10.1016/j.fct.2022.112831
[13] Zhao F, Cui ZJ, Wang PF, et al. GRP75-dependent mitochondria-ER contacts ensure cell survival during early mouse thymocyte development[J]. Dev Cell, 2024, 59(19): 2643-2658. e7.
[14] Meng MJ, Jiang YJ, Wang Y, et al. β-carotene targets IP3R/GRP75/VDAC1-MCU axis to renovate LPS-induced mitochondrial oxidative damage by regulating STIM1[J]. Free Radic Biol Med, 2023, 205: 25-46. doi: 10.1016/j.freeradbiomed.2023.05.021
[15] Chi YJ, Bai ZY, Feng GL, et al. ER-mitochondria contact sites regulate hepatic lipogenesis via Ip3r-Grp75-Vdac complex recruiting Seipin[J]. Cell Commun Signal, 2024, 22(1): 464. doi: 10.1186/s12964-024-01829-x
[16] Jiang T, Ruan N, Luo PC, et al. Modulation of ER-mitochondria tethering complex VAPB-PTPIP51: novel therapeutic targets for aging-associated diseases[J]. Ageing Res Rev, 2024, 98: 102320. doi: 10.1016/j.arr.2024.102320
[17] Schragenheim J, Bellner L, Cao J, et al. EET enhances renal function in obese mice resulting in restoration of HO-1-Mfn1/2 signaling, and decrease in hypertension through inhibition of sodium chloride co-transporter[J]. Prostaglandins Other Lipid Mediat, 2018, 137: 30-39. doi: 10.1016/j.prostaglandins.2018.05.008
[18] Yao L, Liang XH, Qiao YJ, et al. Mitochondrial dysfunction in diabetic tubulopathy[J]. Metabolism, 2022, 131: 155195. doi: 10.1016/j.metabol.2022.155195
[19] Wang Y, Katayama A, Terami T, et al. Translocase of inner mitochondrial membrane 44 alters the mitochondrial fusion and fission dynamics and protects from type 2 diabetes[J]. Metabolism, 2015, 64(6): 677-688. doi: 10.1016/j.metabol.2015.02.004
[20] Xiao M, Kong ZL, Che K, et al. The role of mitochondrial fission factor in podocyte injury in diabetic nephropathy[J]. Biochem Biophys Res Commun, 2022, 624: 40-46. doi: 10.1016/j.bbrc.2022.07.019
[21] Li SS, Lin ZY, Xiao HM, et al. Fyn deficiency inhibits oxidative stress by decreasing c-Cbl-mediated ubiquitination of Sirt1 to attenuate diabetic renal fibrosis[J]. Metabolism, 2023, 139: 155378. doi: 10.1016/j.metabol.2022.155378
[22] Yang M, Han YC, Luo SL, et al. MAMs protect against ectopic fat deposition and lipid-related kidney damage in DN patients[J]. Front Endocrinol (Lausanne), 2021, 12: 609580. doi: 10.3389/fendo.2021.609580
[23] Chen XH, Han YC, Gao P, et al. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy[J]. Kidney Int, 2019, 95(4): 880-895. doi: 10.1016/j.kint.2018.10.038
[24] Zhao CY, Li L, Li CR, et al. PACS-2 deficiency in tubular cells aggravates lipid-related kidney injury in diabetic kidney disease[J]. Mol Med, 2022, 28(1): 117. doi: 10.1186/s10020-022-00545-x
[25] Kumar S, Tikoo K. Independent role of PP2A and mTORc1 in palmitate induced podocyte death[J]. Biochimie, 2015, 112: 73-84. doi: 10.1016/j.biochi.2015.02.009
[26] Audzeyenka I, Rachubik P, Typiak M, et al. PTEN-induced kinase 1 deficiency alters albumin permeability and insulin signaling in podocytes[J]. J Mol Med (Berl), 2022, 100(6): 903-915. doi: 10.1007/s00109-022-02204-4
[27] Sharma MD, Garber AJ, Farmer JA. Role of insulin signaling in maintaining energy homeostasis[J]. Endocr Pract, 2008, 14(3): 373-380. doi: 10.4158/EP.ep.14.3.373
[28] Shahzad K, Fatima S, Khawaja H, et al. Podocyte-specific Nlrp3 inflammasome activation promotes diabetic kidney disease[J]. Kidney Int, 2022, 102(4): 766-779. doi: 10.1016/j.kint.2022.06.010
[29] Zhou RB, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation[J]. Nature, 2011, 469(7329): 221-225. doi: 10.1038/nature09663
[30] Mauer M, Doria A. Uric acid and diabetic nephropathy risk[J]. Contrib Nephrol, 2018, 192: 103-109.
[31] Huang CL, Zhang Y, Kelly DJ, et al. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway[J]. Sci Rep, 2016, 6: 29196. doi: 10.1038/srep29196
[32] Zhang ZR, Meszaros G, He WT, et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation[J]. J Exp Med, 2017, 214(9): 2671-2693. doi: 10.1084/jem.20162040
[33] Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis[J]. Science, 2003, 300(5616): 135-139. doi: 10.1126/science.1081208
[34] Liu XQ, Jiang L, Li YY, et al. Wogonin protects glomerular podocytes by targeting Bcl-2-mediated autophagy and apoptosis in diabetic kidney disease[J]. Acta Pharmacol Sin, 2022, 43(1): 96-110. doi: 10.1038/s41401-021-00721-5
[35] Xue M, Fang T, Sun HX, et al. PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation[J]. Cell Death Dis, 2021, 12(12): 1107. doi: 10.1038/s41419-021-04408-x
[36] Mao H, Chen W, Chen LX, et al. Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases[J]. Biochem Pharmacol, 2022, 199: 115011. doi: 10.1016/j.bcp.2022.115011
[37] Sugo M, Kimura H, Arasaki K, et al. Syntaxin 17 regulates the localization and function of PGAM5 in mitochondrial division and mitophagy[J]. EMBO J, 2018, 37(21): e98899. doi: 10.15252/embj.201798899
[38] Ayanga BA, Badal SS, Wang Y, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy[J]. J Am Soc Nephrol, 2016, 27(9): 2733-2747. doi: 10.1681/ASN.2015101096
[39] Li CR, Li L, Yang M, et al. PACS-2 ameliorates tubular injury by facilitating endoplasmic reticulum-mitochondria contact and mitophagy in diabetic nephropathy[J]. Diabetes, 2022, 71(5): 1034-1050. doi: 10.2337/db21-0983
[40] Wang XY, Cao HB, Fang YK, et al. Activation of endoplasmic reticulum-mitochondria coupling drives copper-induced autophagy in duck renal tubular epithelial cells[J]. Ecotoxicol Environ Saf, 2022, 235: 113438. doi: 10.1016/j.ecoenv.2022.113438
[41] Kato M, Abdollahi M, Tunduguru R, et al. miR-379 deletion ameliorates features of diabetic kidney disease by enhancing adaptive mitophagy via FIS1[J]. Commun Biol, 2021, 4(1): 30. doi: 10.1038/s42003-020-01516-w
[42] Alsina KM, Hulsurkar M, Brandenburg S, et al. Loss of protein phosphatase 1 regulatory subunit PPP1R3A promotes atrial fibrillation[J]. Circulation, 2019, 140(8): 681-693. doi: 10.1161/CIRCULATIONAHA.119.039642
[43] Liu Y, Qiao YJ, Pan SK, et al. Broadening horizons: the contribution of mitochondria-associated endoplasmic reticulum membrane (MAM) dysfunction in diabetic kidney disease[J]. Int J Biol Sci, 2023, 19(14): 4427-4441. doi: 10.7150/ijbs.86608
[44] Liu SS, Han S, Wang CL, et al. MAPK1 mediates MAM disruption and mitochondrial dysfunction in diabetic kidney disease via the PACS-2-dependent mechanism[J]. Int J Biol Sci, 2024, 20(2): 569-584. doi: 10.7150/ijbs.89291
[45] Mori Y, Ajay AK, Chang JH, et al. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease[J]. Cell Metab, 2021, 33(5): 1042-1061. e7.
[46] Han YZ, Du BX, Zhu XY, et al. Lipid metabolism disorder in diabetic kidney disease[J]. Front Endocrinol (Lausanne), 2024, 15: 1336402. doi: 10.3389/fendo.2024.1336402
[47] Lu QY, Yang LJ, Xiao JJ, et al. Empagliflozin attenuates the renal tubular ferroptosis in diabetic kidney disease through AMPK/NRF2 pathway[J]. Free Radic Biol Med, 2023, 195: 89-102. doi: 10.1016/j.freeradbiomed.2022.12.088
[48] Sankrityayan H, Shelke V, Kale A, et al. Evaluating the potential of tauroursodeoxycholic acid as add-on therapy in amelioration of streptozotocin-induced diabetic kidney disease[J]. Eur J Pharmacol, 2023, 942: 175528. doi: 10.1016/j.ejphar.2023.175528
[49] Song Y, Guo F, Zhao YY, et al. Verapamil ameliorates proximal tubular epithelial cells apoptosis and fibrosis in diabetic kidney[J]. Eur J Pharmacol, 2021, 911: 174552. doi: 10.1016/j.ejphar.2021.174552
[50] Lin YC, Chang YH, Yang SY, et al. Update of pathophysiology and management of diabetic kidney disease[J]. J Formos Med Assoc, 2018, 117(8): 662-675. doi: 10.1016/j.jfma.2018.02.007
[51] Zhou YX, Liu L, Jin BM, et al. Metrnl alleviates lipid accumulation by modulating mitochondrial homeostasis in diabetic nephropathy[J]. Diabetes, 2023, 72(5): 611-626. doi: 10.2337/db22-0680
[52] Ren HW, Shao Y, Wu C, et al. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway[J]. Mol Cell Endocrinol, 2020, 500: 110628. doi: 10.1016/j.mce.2019.110628