高级检索

不同冻力明胶的溶胀动力学和交联稳定性

董晨东, 卫士杰, 段子卿, 刘建平

董晨东, 卫士杰, 段子卿, 刘建平. 不同冻力明胶的溶胀动力学和交联稳定性[J]. 中国药科大学学报, 2010, 41(5): 435-440.
引用本文: 董晨东, 卫士杰, 段子卿, 刘建平. 不同冻力明胶的溶胀动力学和交联稳定性[J]. 中国药科大学学报, 2010, 41(5): 435-440.
Swelling kinetics and cross-linking stability of gelatins with different gel strength[J]. Journal of China Pharmaceutical University, 2010, 41(5): 435-440.
Citation: Swelling kinetics and cross-linking stability of gelatins with different gel strength[J]. Journal of China Pharmaceutical University, 2010, 41(5): 435-440.

不同冻力明胶的溶胀动力学和交联稳定性

基金项目: 国家“重大新药创制”科技重大专项资助项目(No.2009ZX09310-004);国家中医药管理局中医药科学技术研究计划资助项目(No.06-07ZP20)

Swelling kinetics and cross-linking stability of gelatins with different gel strength

  • 摘要: 研究不同冻力明胶的溶胀动力学和稳定性差异,探讨影响明胶冻力和交联活性的组分。采用SDS-PAGE法测定不同冻力明胶中各组分的含量,用CM52阳离子交换柱分离得明胶α,β和γ组分,并利用甲醛交联模拟实验考察α,β和γ组分的交联活性,同时以平衡膨胀率(Seq)和ε-氨基酸残基含量为指标,对不同冻力明胶进行溶胀动力学和交联稳定性的考察。结果表明,随着明胶α组分含量增大,明胶的冻力升高,而其平衡膨胀率数值却减小;α,β和γ组分的ε-氨基酸残基含量及交联活性均以α>β>γ的顺序下降;随着明胶冻力的增大,ε-氨基酸残基含量逐渐升高,加速条件下实验结果表明,高冻力明胶较为不稳定,贮存过程中易发生交联。
    Abstract: The purpose of this study was to investigate swelling kinetics and stability of gelatins with different gel strengths,as well as the component which might affect gel strength and cross-linking reactivity.SDS-PAGE assay was undertaken to determine the content of gelatin components - α,β and γ component which were isolated through CM52 cation exchange column ,and the cross-linking activity of the components was determined by the formaldehyde cross-linking simulation study.At the same time,the equilibrium swelling ratio (Seq) and ε-amino acid residue content indicative of the swelling kinetics and the stability of cross-linking were assessed according to the methods reported in the literatures.It was shown that the increase in α- component led to the corresponding increase in the gel strength of gelatin but the decrease in the equilibrium swelling ratio.The ε-amino acid residue contents of α,β and γ components decreased in the order of α> β> γ.It was found that the gel strength increased as the ε-amino acid content did .Accelerating study showed that instability-indicative cross-linking could occour in the gelatin with higher gel strength during storage.
  • 耳鸣作为耳科常见症状之一,一般是指在没有外部声音的刺激下,患者自身感知到有声音的感觉,通常是耳聋的先兆。有研究表明,随着年龄的增加,耳鸣的发病率也会出现升高的现象[1]。同时,耳鸣会引起患者一系列不良反应,包括失眠、焦虑、注意力不集中、沮丧等,严重者甚至自残、自杀等[23]。此外,严重的抑郁症也会加重耳鸣[4]。产生耳鸣的原因有很多,内耳缺氧[5]、噪声[6]、耳毒性药物[7]、衰老[8]和其他疾病[910]等多种因素都可能会引起耳蜗毛细胞损伤从而造成耳鸣耳聋,由于其复杂的致病原因,应针对具体情况选择不同的药物进行准确治疗。

    耳聋左慈丸(Erlong Zuoci Pills,ELZC)作为经典名方,其核心成分建立在传统的六味地黄丸这一补肾方剂上,另外添加了竹叶柴胡和磁石两味药材。已有研究证实该药在临床上对耳聋患者有很好的疗效[1114]。课题组前期发现ELZC的组成物质大多都有抗氧化作用(未发表)。熟地黄是ELZC复方中的君药,其主要成分毛蕊花糖苷可以减轻心肌细胞在缺氧/复氧的状态下受到的损伤[15]。因此本研究推测,ELZC对受损的小鼠耳蜗毛细胞(house ear institute-organ of Corti 1,HEI-OC1)也可能会显示出一定的保护效果。目前关于耳损伤的细胞研究大多选用过氧化氢(H2O2)作为模型药物[1617],本实验同样利用H2O2建立氧化应激模型,对ELZC的药理作用进行研究。以抗氧化和增强免疫力的特性闻名的抗坏血酸(vitamin C,VC)在本研究中被选作阳性对照[18]

    代谢组学(metabonomics)是一种研究生物体系受到外界环境刺激包括饮食、环境压力、微生物群以及疾病和治疗状态后体内代谢产物变化的技术手段。在研究药物治疗和疾病发展过程中,代谢组学的结果能与体内的病理生理状态直接对应[19]。因细胞实验存在易于控制、重复性高、成本较低的特点,细胞代谢组学也正广泛运用于筛选疾病发生过程中的代谢标志物[20]。当HEI-OC1受到有害刺激时,ELZC是否对受损细胞的内源性代谢物产生影响,目前尚不得知。因此本实验在考察ELZC对HEI-OC1细胞氧化应激保护作用的基础上,再通过检测胞内代谢物质的改变情况来为ELZC的药效机制提供研究方向。

    UFLC超高效液相色谱仪(日本岛津公司);Triple TOF5600质谱仪(美国Sciex公司);台式低温高速离心机、真空旋转挥干仪(美国赛默飞世尔科技公司);多功能微孔板检测仪(美国伯腾仪器有限公司)。

    DMEM培养基、胰蛋白酶、胎牛血清(美国赛默飞世尔科技公司);细胞培养耗材(美国康宁公司);活性氧检测试剂盒、BCA蛋白浓度检测试剂盒、总超氧化物歧化酶活性检测试剂盒、乳酸脱氢酶细胞毒性检测试剂盒、增强型CCK-8检测试剂盒(碧云天生物技术有限公司);30% 过氧化氢(南京化学试剂股份有限公司);毛蕊花糖苷(批号:RH260383,罗恩化学试剂);耳聋左慈丸原料药粉末(批号:20210309,杭州胡庆余堂药业有限公司);其他试剂均为市售分析纯。

    小鼠耳蜗毛细胞株HEI-OC1由东南大学生命科学研究院柴人杰教授惠赠。

    称取ELZC原药粉末1.88 g,溶于乙醇-水(V/V,1∶1)溶液30 mL中,超声提取3 h,弃去底部不溶的沉淀,上清液用0.22 μm针式滤器过滤,生药浓度为0.06 g/mL。取出部分滤过液,用甲醇稀释100倍后进样分析,利用课题组先前建立的方法确定提取液中毛蕊花糖苷的浓度[21],用毛蕊花糖苷的浓度来表征ELZC的不同剂量,剩余提取液存于4 ℃备用。

    实验分为空白组(Control)、模型组(Model)、ELZC高剂量组(TQH)、中剂量组(TQM)、低剂量组(TQL)和阳性药抗坏血酸组(VC)。HEI-OC1细胞用含10%胎牛血清的DMEM培养基,在二氧化碳浓度为5%,温度为37 ℃,相对湿度为90%的培养箱中进行正常培养,当细胞达到对数生长期时,将细胞按适宜的密度在不同孔板中正常培养24 h后,弃去上清液,空白组和模型组加入DMEM培养基,给药组分别加入含不同浓度ELZC(最终生药浓度为0.6、0.3和0.06 g/L,即毛蕊花糖苷的含量为1110、555和111 μg/L),VC组(250 μg/L)的空白DMEM培养基生长12 h,弃去上清液,除空白组更换成DMEM培养基外,其他各组均加入用DMEM培养基配制的0.90 mmol/L的H2O2造模12 h,到达时间后再进行后续指标测定。

    将细胞按适宜的密度在96孔板中正常培养24 h后,弃去上清液,空白组加入DMEM培养基,其他各组加入不同浓度的H2O2溶液,造模12 h后弃上清液,将用DMEM培养基配制的浓度为10%的 CCK-8溶液100 μL加入到需要测定的孔中,在37 ℃培养箱里孵育20 min后,在450 nm处进行吸光度测定。

    实验分组同“2.2”项。在造模11 h时,把LDH释放试剂20 μL加入到空白组中的各孔里,此时该组为最大酶活性对照组。继续培养至造模预定时间后,将孔中液体分别转移至1.5 mL的离心管中,随后使用LDH细胞毒性检测试剂盒进行样品测定。

    实验分组同“2.2”项。造模12 h后弃去培养液,把DMEM培养基稀释1000倍的荧光探针溶液在6孔板的每孔中各加1 mL,在37 ℃培养箱里继续培养30 min,弃去探针溶液,用预冷的生理盐水对6孔板进行3次清洗后,每孔加入裂解液(氢氧化钠-水-甲醇,W/V/V,4∶1∶1)600 μL,反复吹打混匀后,选择低温离心的方式,以6000 r/min转速把裂解液离心5 min,缓慢吸取上清液200 μL至96孔全黑酶标板中,立即使用酶标仪在488和525 nm下进行双波长吸光度检测。

    实验分组同“2.2”项。造模12 h后弃去上清液,用预冷的生理盐水清洗1遍,然后加入SOD样品制备液反复吹打后,继续按照说明书进行测定。

    本实验所用色谱条件、质谱条件及样品处理方法与课题组先前发表的文章一致[22]

    利用本实验室前期建立的内源代谢物鉴定库对样品的质谱信息进行积分与鉴定[23]。使用MultiQuant 2.0软件和SIMCA-P 14.1软件对数据进行初步处理和多元分析。其中初步处理包括剔除异常值、归一化等,多元分析包括主成分分析(PCA)、偏最小二乘法分析(PLS-DA)和正交偏最小二乘法分析(OPLS-DA)。以P<0.05、差异倍数(Fold Change,FC)>1.2和变量投射重要性(Variable Importance in Projection,VIP)>1为限定条件对特征代谢物进行筛选,最后在MetaboAnalyst 6.0网站(https://www.metaboanalyst.ca)上对符合条件的物质进行代谢途径分析。药效数据使用$\bar{x}\pm s $表示,利用GraphPad 9.0统计软件中的单因素方差分析(One-Way ANOVA)方法在多组别之间进行差异比较,以P<0.05认为结果具有统计学意义。

    随着H2O2浓度的增加,HEI-OC1细胞的增殖能力逐步下降(图1)。分析数据求得H2O2对HEI-OC1细胞的IC50为0.92 mmol/L,为了便于操作,后续实验选择以0.90 mmol/L的H2O2诱导12 h作为造模条件。

    Figure  1.  Proliferation rate of House Ear Institute-Organ of Corti 1 (HEI-OC1) cells under different concentrations of hydrogen peroxide ($\bar{x}\pm s $,n=5)

    上述结果表明0.9 mmol/L的H2O2可对HEI-OC1细胞造成明显的损伤,根据前期预实验结果,本实验中对细胞采用了先给药后造模的处理方式。ELZC的低、中、高3个浓度都能够显著提高细胞的增殖能力(图2-A)。CCK-8结果直观地反映了ELZC对氧化应激状态下HEI-OC1细胞的保护作用。

    Figure  2.  Pharmacodynamic indexes ($\bar{x}\pm s $,n=5)
    A: Cell viability of HEI-OC1 cells; B: Different drugs on lactate dehydrogenase(LDH)release amounts in HEI-OC1 cells supernatant; C: Different drugs on reactive oxygen species (ROS)content in HEI-OC1 cells; D: Different drugs on superoxide dismutase (SOD)activity in HEI-OC1 cells. (Control: Control group; Model: Model group; TQH, TQM,TQL: High, medium, and low dose groups of ELZC; VC: Ascorbic acid group) ***P<0.001 vs control group; #P<0.05,##P<0.01,###P<0.001 vs model group

    模型组的LDH释放量与空白组相比明显增多,ELZC给药保护可以改善这种情况,降低LDH在细胞培养液中的释放量(图2-B)。结果表明ELZC可以减少HEI-OC1细胞受损时LDH的释放量。

    HEI-OC1细胞在H2O2刺激后ROS水平激增,在ELZC的给药干预下,细胞中的ROS含量有降低至空白组的趋势(图2-C)。数据显示ELZC有效地消除了H2O2诱导的HEI-OC1细胞中ROS的积累。

    模型组中HEI-OC1细胞的SOD活性与空白组相比呈现下降趋势,证明H2O2对细胞造成了损伤,体内抗氧化能力降低,模型有效。而ELZC给药保护后可以逆转这种现象(图2-D)。结果表明3种浓度的ELZC都能将造模后细胞中的SOD活性恢复至正常水平。

    结合前期药效结果,该部分选择空白组、模型组和TQM 3组进行代谢组学分析。PCA和PLS-DA得分图显示各组内聚集性良好,组间差异明显(图3-A、3-B)。其中QC组分布在图形中央,表明检测方法稳定可靠。空白组分布在图片的右侧,模型组位于左侧,说明造模后细胞在代谢物水平上的变化较明显,TQM组分布在图片中间部分,即给药后存在将内源性代谢物回调至空白组的趋势。R2和Q2分别对应模型的可解释性和预测性,置换检验结果显示所有样本点都低于右上方基准值,并且两条斜线斜率均为负值,表明该模型在拟合条件下表现良好(图3-C)。

    Figure  3.  Multivariate statistical analysis plots($\bar{x}\pm s $,n=5)
    A: Principal component analysis plot; B: Partial least squares discriminant analysis plot; C: Permutation test

    以FC>1.2且P<0.05作为条件对检测到的内源性物质进行筛选。该部分共测到166个内源性物质,在空白组与模型组之间存在110种物质上调,4种代谢物下调;而模型组与TQM组中有4种物质上调,108种物质下调(图4-A、4-D)。同时对处理后的数据进行OPLS-DA分析,结果发现空白组、模型组和TQM组之间存在明显差异(图4-B、4-E),并得到了两两对比的VIP图用于代谢物筛选(图4-C、4-F)。最终以VIP>1、FC>1.2和P<0.05为限定条件对差异代谢物进行筛选,最后在空白组、模型组和TQM中发现24个符合条件的差异代谢物。从热图和代谢通路的角度对差异代谢物进行整合,热图结果表明,尿苷、苯丙氨酸、色氨酸、酪氨酸、组氨酸等多种物质在模型组下调,给药后能纠正这些物质的含量变化(图5-A)。从影响度(pathway impact)和P值两方面综合考虑,ELZC对HEI-OC1细胞的氧化应激的保护作用主要通过调节嘧啶代谢、苯丙氨酸、酪氨酸和色氨酸生物合成、苯丙氨酸代谢以及组氨酸代谢途径来实现(图5-B)。

    Figure  4.  Differential metabolite screening analysis($\bar{x}\pm s $,n=5)
    A: Volcano plot of all tested substances between Control group and Model group; B: Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) score chart between Control group and Model group; C: All tested substances between Control group and Model group are sorted by Variable Importance in Projection (VIP)value; D: Volcano plot of all tested substances between Model group and TQM group; E: OPLS-DA score chart between Model group and TQM group; F: All tested substances between Model group and TQM group are sorted by VIP value
    Figure  5.  Metabolomics analysis($\bar{x}\pm s $,n=5)
    A: Heat map; B: Metabolic pathway analysis diagram

    本研究首先讨论了H2O2引起HEI-OC1细胞发生氧化应激时,ELZC是否具有保护作用。过量的ROS产生诱导机体发生氧化应激,同时出现SOD活性下降以及LDH释放量变多的现象,最终导致细胞死亡、蛋白质功能受损及组织损伤[2425]。本研究也证明了在H2O2诱导下,模型组的细胞出现存活能力下降、SOD活性降低、ROS水平升高和LDH释放量显著增加的现象,符合氧化应激时机体抗氧化能力下降的特点。在ELZC给药保护后,细胞中ROS水平以及上清液的LDH释放呈现下降趋势,并与模型组ROS水平差异明显;SOD活性也上升至空白组附近,该结论证明了ELZC在HEI-OC1细胞发生氧化应激时具有保护作用。随后,本研究继续考察了ELZC在HEI-OC1细胞氧化应激时对内源性代谢物质的影响。通路分析表明,ELZC主要对嘧啶代谢产生影响,对苯丙氨酸代谢、苯丙氨酸、酪氨酸和色氨酸生物合成以及组氨酸代谢途径也具有一定的调节作用。

    在嘧啶代谢过程中,尿苷是重要代谢产物之一。尿苷被认为是一种有效的再生促进因子,其在具有较高再生潜力的组织或细胞中含量更高[26]。另外,尿苷的抗氧化作用被广泛报道[2728]。外源性尿苷给药可以防止高氧损伤模型带来的ROS浓度升高[29],还有研究表明给予尿苷治疗可以防止脂多糖诱导产生炎症因子的增加[30]。模型组的尿苷含量降低,破坏氧化系统稳态,给药后细胞内的尿苷含量升高,推断ELZC可能通过干预嘧啶代谢来改善H2O2对HEI-OC1细胞造成的氧化应激。

    氨基酸代谢作为细胞增殖发育的必经过程之一,已有文献报道,氨基酸代谢的紊乱与多囊卵巢综合征的发病机制有关[31]。苯丙氨酸、酪氨酸和色氨酸均属于芳香族氨基酸,它们是合成单胺类神经递质的重要前体,这些物质在体内发挥着重要作用[32]。临床试验通过检测中青年重度抑郁症患者的尿液样本,发现与健康受试者相比,患者体内的苯丙氨酸代谢受到显著影响[33]。随着病情的加重,稳定型心绞痛患者、急性心肌梗死患者体内L-苯丙氨酸的表达水平显著下调[34]。另有数据表明,色氨酸合成不足会引起亚临床抑郁症患者体内的5-羟色胺水平下降,进而导致抑郁症。苯丙氨酸代谢和苯丙氨酸、色氨酸、酪氨酸生物合成途径的紊乱会引起抑郁症状和脑功能性网络的变化[35]。叶酸缺失会导致各种健康问题,在小麦育种的过程中,添加一定比例的芳香族氨基酸,可以提高小麦幼苗叶酸的积累,向消费者提供更多的叶酸[36]。另外,将色氨酸适当添加到鹅的基础饲料中,对扬州鹅血清中SOD的活性和总抗氧化能力均有显著的改善作用[37]。在膳食中补充色氨酸也可以改善热应激肉鸡的直肠温度,改善盲肠微生物群落,增强免疫力[38]。褪黑素、烟酰胺腺嘌呤二核苷酸等作为色氨酸的代谢产物,也参与畜禽体内抗氧化、泌乳、免疫反应和动物采食等生理过程[39]。组氨酸是哺乳动物必需氨基酸之一,在不同物种中起到特定的代谢功能[40]。每日摄入组氨酸可以改善有疲劳感的中年男性的情绪状态和记忆能力[41]。在戊二烯四唑诱导的癫痫大鼠中,组氨酸可以通过剂量依赖的方式抑制癫痫发作[42]。在本研究中,HEI-OC1细胞因受到外界有害刺激而导致氨基酸代谢紊乱,而ELZC给药后通过增加苯丙氨酸、酪氨酸、色氨酸等氨基酸的含量,对氨基酸代谢紊乱产生了一定的修正作用,恢复了机体的抗氧化能力。

    综上,本研究以证明ELZC抗氧化的药理活性为基础,利用细胞代谢组学的手段,发现ELZC给药可以增加细胞内尿苷及苯丙氨酸、酪氨酸等氨基酸的含量,推测该复方可能是通过正向调节嘧啶代谢、苯丙氨酸代谢、苯丙氨酸、酪氨酸和色氨酸生物合成以及组氨酸代谢等通路对氧化应激状态下的HEI-OC1细胞进行保护。该研究首次从代谢组学的角度阐明了ELZC对HEI-OC1细胞的作用机制,从抗氧化的角度为耳鸣的治疗和研究提供有力支撑。

计量
  • 文章访问数:  1743
  • HTML全文浏览量:  0
  • PDF下载量:  3218
  • 被引次数: 0
出版历程
  • 刊出日期:  2010-10-24

目录

/

返回文章
返回
x 关闭 永久关闭