高级检索

间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展

杨婧雯, 陈芊, 单云龙, 刘嘉莉, 尉宁, 王婧, 王广基, 周芳

杨婧雯,陈芊,单云龙,等. 间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展[J]. 中国药科大学学报,2024,55(1):103 − 114. DOI: 10.11665/j.issn.1000-5048.2023113001
引用本文: 杨婧雯,陈芊,单云龙,等. 间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展[J]. 中国药科大学学报,2024,55(1):103 − 114. DOI: 10.11665/j.issn.1000-5048.2023113001
YANG Jingwen, CHEN Qian, SHAN Yunlong, et al. Research progress on mesenchymal stem cell products and their exosomes in the treatment of inflammatory bowel disease[J]. J China Pharm Univ, 2024, 55(1): 103 − 114. DOI: 10.11665/j.issn.1000-5048.2023113001
Citation: YANG Jingwen, CHEN Qian, SHAN Yunlong, et al. Research progress on mesenchymal stem cell products and their exosomes in the treatment of inflammatory bowel disease[J]. J China Pharm Univ, 2024, 55(1): 103 − 114. DOI: 10.11665/j.issn.1000-5048.2023113001

间充质干细胞产品及其外泌体在炎症性肠病治疗中的研究进展

基金项目: 国家自然科学基金项目(No. 82073928);南京市生命健康科技专项(No.202110006);细胞生态海河实验室创新基金项目(22HHXBSS00005);江苏省南京市联合资助项目(SBK2023070039)
详细信息
    作者简介:

    王广基,教授,中国工程院院士,曾任中国药科大学副校长,现任中国药科大学学术委员会主席,江苏省科学技术协会副主席,江苏省药物代谢动力学重点实验室主任,国家中医药管理局中药复方药代动力学重点实验室主任,教育部药物代谢动力学博士学位授权点学科带头人(全国唯一)。兼任中国药理学会制药工业专业委员会主任委员,江苏省药理学会理事长。第十一、十二届全国人大代表。致力于药物代谢动力学的教学和研究工作,荣获国家科学技术进步二等奖4项、部省级科技进步奖一等奖4项;获2012年何梁何利基金科学与技术进步奖

    周芳,中国药科大学药物代谢动力学重点实验室研究员,博士生导师。教育部新世纪优秀人才,全国创新争先团队核心成员,江苏省333工程人才,江苏省青年科技奖获得者。长期致力于“细胞药代动力学新技术及新模型在创新药物研发和临床用药中的应用”研究,获2017年江苏省科技进步奖一等奖(排2),揭示了药物在微观细胞/亚细胞层面的命运,为创新药物研发和临床合理用药做出较大的推动作用。获省部级以上科技奖励4项;主持重大新药创制专项2项、国家自然科学基金5项,参与重大项目十多项。以第一/通信作者在Acta Pharm Sin BJ Control Release J Exp Clin Cancer ResBr J Pharmacol等药学领域权威期刊发表SCI论文47篇;申请发明专利7项,授权5项;获软件著作权2项

    通讯作者:

    王广基: Tel:025-83271179 E-mail:guangjiwang@hotmail.com

    周芳: Tel:025-83271179 E-mail:zf1113@163.com

  • 中图分类号: R574

Research progress on mesenchymal stem cell products and their exosomes in the treatment of inflammatory bowel disease

Funds: This study was supported by the National Natural Science Foundation of China (No. 82073928); the Nanjing Life and Health Science and Technology Program (No.202110006); the Haihe Laboratory of Cell Ecosystem Innovation Fund (22HHXBSS00005); and the Co-funded Programs in Nanjing, Jiangsu Province (SBK2023070039)
  • 摘要:

    炎症性肠病(inflammatory bowel disease, IBD)发病机制不明,特征为进行性和终身复发性消化道炎症反应。尽管现阶段新的治疗药物和策略不断涌现,但治疗作用局限于单一的抗炎功能,在复杂黏膜免疫环境下易出现耐药导致治疗失败。间充质干细胞(mesenchymal stem cells, MSCs)能定向归巢到结肠炎症部位,具有强大的免疫调节能力,可重塑肠道免疫环境和修复上皮屏障,为药物难治性患者的治疗提供了极具潜力的替代方案。本文对MSCs产品及其衍生的外泌体在临床上的应用、作用机制和工程化进行综述,以期为MSCs及其外泌体产品用于IBD的治疗提供参考。

    Abstract:

    Inflammatory bowel disease (IBD), whose pathogenesis remains elusive, is a group of autoimmune diseases characterized by chronic, progressive, and lifelong inflammation of the digestive tract. The pathogenesis of IBD remains elusive. Although a number of drugs have been developed to treat IBD, their effects are merely anti-inflammatory. In addition, current treatments for IBD are easily susceptible to resistance in clinical practice. Mesenchymal stem cells (MSCs) have been reported to have the ability to migrate to the site of inflammation, with potent immunoregulatory effects, and to rebalance the immune microenvironment and restore the integrity of the epithelial barrier with significant value of application, particularly for patients who are refractory to classic medicines. In this paper, we reviewed the clinical applications, mechanisms and engineerable properties of MSC products and their exosomes to provide some reference for the use of MSCs and their exosomes in the treatment of IBD.

  • 图  1   MSCs用于难治性炎症性肠病(IBD)治疗的优势示意图

    A:在难治性IBD患者的肠壁损伤部位,炎性巨噬细胞可释放多种细胞因子,加重局部免疫微环境的失调;B:MSCs对于应用抗体类生物药物或传统药物无效的IBD患者具有治疗效果;C:MSCs在pfCD患者中的应用:瘘管部位CD68+巨噬细胞、CD45RO+ T细胞和CD20+ B细胞密集浸润,释放很多TNF-α、IFN-γ、IL-6和IL-17,MSCs可对瘘管的局部炎症微环境做出响应,发挥免疫调节及瘘管修复作用OSM:抑瘤素-M;IFN-γ:干扰素-γ;pfCD:肛周瘘管性克罗恩病

    图  2   MSCs治疗IBD的机制和特征

    A:MSCs能与各种免疫细胞如巨噬细胞、T细胞和中性粒细胞相互作用,抑制炎症;B:给药后,MSCs可以迁移到炎症部位,MSCs的定向迁移受到多种因子的驱动,如MMP、P-选择素和CXCR4-CXCL12轴;C:MSCs分泌VEGF促进血管生成;D:通过分泌TSG-6和IGF-1,MSCs促进上皮细胞增殖,增强肠道屏障完整性;E:MSCs对肠道神经元的保护作用;F:MSC-Exos含有miR-200b能够逆转IBD结肠纤维化TSG-6:肿瘤坏死因子刺激基因-6;IGF-1:胰岛素样生长因子-1;MMP:基质金属蛋白酶;VEGF:血管内皮生长因子;CXCR:C-X-C趋化因子受体; CXCL:C-X-C趋化因子配体;MSC-Exos:由MSCs产生的外泌体(exosomes)

    图  3   MSCs 及MSC-Exos 的工程化

    A:过表达CXCR2、CXCR4、CX3CR1和ICAM-1的MSCs表现出对结肠的增强的定向迁移;B:多价VCAM-1抗体修饰的MSCs显示对炎症性内皮细胞的增强黏附,提高了对炎症部位的归巢;C:负载于生物材料支架上的MSCs减轻局部炎症并促进再生;D:过表达miR-146a的MSC-Exos具有更强的抗炎效果;E:MSC-Exos包裹在海藻酸钠微球中,微球被明胶层和pH敏感的Eudragit FS30D丙烯酸树脂壳包裹,可保护MSC-Exos免受降解AAV:腺相关病毒;CX3CR:C-X3-C趋化因子受体;ICAM-1:细胞间黏附分子-1;VCAM-1:血管细胞黏附分子-1;NF-κB:核因子-κB

    表  1   已上市用于炎症性肠病治疗的药物与间充质干细胞(MSCs)产品的对比

    分类 代表药物 作用机制 适应证 给药方式 剂量 不良反应
    氨基水杨酸类 美沙拉嗪 抑制免疫细胞的免疫反应
    和促炎因子产生
    轻、中度UC和轻度CD诱导和维持缓解 po 2 ~ 4 g/d分次口服或顿服 磺胺过敏、胃肠道反应、肝肾功能损害和胰腺炎
    糖皮质激素 泼尼松龙 抑制炎症因子转录,促进炎症细胞凋亡 UC&CD 不用于维持治疗 po
    iv
    im
    活动期每日0.75~
    1 mg/kg, t.i.d.
    青光眼、高血糖症、高血压和库欣综合征等
    抗TNF-α 英夫利昔单抗 抑制TNF-α信号转导通路 UC&CD iv 5 mg/kg,0, 2, 6 w给药,随后每 8周给药 严重感染、恶性肿瘤、银屑病等
    抗IL-12/IL-23 乌司奴单抗 与IL-12p40结合,阻断IL-12 / IL-23通路 UC&CD iv
    s.c.
    45 mg,0, 4 w给药,随后每12 周给药 感染、恶性肿瘤、过敏反应
    抗整合素 维得利珠单抗 抑制白细胞归巢 UC&CD iv 300 mg,0, 2, 6 w给药,随后每8周给药 严重感染、过敏反应、多灶性脑白质病
    免疫调节剂 6-巯基嘌呤 破坏嘌呤代谢 UC&CD po 每日1.5~2.5 mg/kg, b.i.d., t.i.d. 骨髓抑制、肝功能损害、恶心、呕吐
    JAK 抑制剂 托法替尼 阻断JAK介导的细胞因子信号通路 UC&CD po 5~10 mg, b.i.d. 头晕、头痛、胃肠反应、感染
    S1P 受体调节剂 奥扎莫德 抑制淋巴细胞归巢 UC po 开始治疗需滴定 维持:0.92 mg, q.d. 上呼吸道感染、头痛
    MSCs Darvadstrocel 免疫抑制、组织修复、抗纤维化、保护神经元 CD合并复杂性肛瘘 瘘管内
    注射
    每千克1×106 ~2×106个细胞,长期有效 暂无不良反应事件报告
    Cupistem
    UC:溃疡性结肠炎;CD:克罗恩病;IL:白介素; TNF-α:肿瘤坏死因子-α;JAK:Janus激酶;S1P:鞘氨醇-1-磷酸
    下载: 导出CSV
  • [1]

    Targan SR, Hanauer SB, van Deventer SJ, et al. A short-term study of chimeric monoclonal antibody CA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease CA2 Study Group[J]. N Engl J Med, 1997, 337(15): 1029-1035. doi: 10.1056/NEJM199710093371502

    [2]

    Ward D, Nyboe Andersen N, Gørtz S, et al. Tumor necrosis factor inhibitors in inflammatory bowel disease and risk of immune mediated inflammatory diseases[J]. Clin Gastroenterol Hepatol, 2024, 22(1): 135-143. e8.

    [3]

    Beaugerie L, Rahier JF, Kirchgesner J. Predicting, preventing, and managing treatment-related complications in patients with inflammatory bowel diseases[J]. Clin Gastroenterol Hepatol, 2020, 18(6): 1324-1335. e2.

    [4]

    Click B, Regueiro M. A practical guide to the safety and monitoring of new IBD therapies[J]. Inflamm Bowel Dis, 2019, 25(5): 831-842. doi: 10.1093/ibd/izy313

    [5]

    le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study[J]. Lancet, 2008, 371(9624): 1579-1586. doi: 10.1016/S0140-6736(08)60690-X

    [6]

    Álvaro-Gracia JM, Jover JA, García-Vicuña R, et al. Intravenous administration of expanded allogeneic adipose-derived mesenchymal stem cells in refractory rheumatoid arthritis (Cx611): results of a multicentre, dose escalation, randomised, single-blind, placebo-controlled phase Ib/IIa clinical trial[J]. Ann Rheum Dis, 2017, 76(1): 196-202. doi: 10.1136/annrheumdis-2015-208918

    [7] Wu K, Liang J, Ran Z, et al. Chinese consensus on diagnosis and treatment of inflammatory bowel disease (Beijing, 2018)[J]. Chin J Pract Intern Med(中国实用内科杂志), 2018, 38(9): 796-813.
    [8]

    Fumery M, Singh S, Dulai PS, et al. Natural history of adult ulcerative colitis in population-based cohorts: a systematic review[J]. Clin Gastroenterol Hepatol, 2018, 16(3): 343-356. e3.

    [9]

    Sutherland L, MacDonald JK. Oral 5-aminosalicylic acid for induction of remission in ulcerative colitis[J]. Cochrane Database Syst Rev, 2006(2): CD000543.

    [10]

    Ardizzone S, Bollani S, Manzionna G, et al. Comparison between methotrexate and azathioprine in the treatment of chronic active Crohn’s disease: a randomised, investigator-blind study[J]. Dig Liver Dis, 2003, 35(9): 619-627. doi: 10.1016/S1590-8658(03)00372-4

    [11]

    Cassinotti A, Corona A, Duca P, et al. Noninvasive monitoring after azathioprine withdrawal in patients with inflammatory bowel disease in deep remission[J]. Clin Gastroenterol Hepatol, 2021, 19(11): 2293-2301. e1.

    [12]

    Wylezinski LS, Gray JD, Polk JB, et al. Illuminating an invisible epidemic: a systemic review of the clinical and economic benefits of early diagnosis and treatment in inflammatory disease and related syndromes[J]. J Clin Med, 2019, 8(4): 493. doi: 10.3390/jcm8040493

    [13]

    Parigi TL, D’Amico F, Abreu MT, et al. Difficult-to-treat inflammatory bowel disease: results from an international consensus meeting[J]. Lancet Gastroenterol Hepatol, 2023, 8(9): 853-859. doi: 10.1016/S2468-1253(23)00154-1

    [14]

    Liu JZ, van Sommeren S, Huang HL, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations[J]. Nat Genet, 2015, 47(9): 979-986. doi: 10.1038/ng.3359

    [15]

    Ye ZQ, Qian L, Hu WH, et al. Clinical outcome of infantile-onset inflammatory bowel disease in 102 patients with interleukin-10 signalling deficiency[J]. Aliment Pharmacol Ther, 2022, 55(11): 1414-1422. doi: 10.1111/apt.16837

    [16]

    Moltzau Anderson J, Lipinski S, Sommer F, et al. NOD2 influences trajectories of intestinal microbiota recovery after antibiotic perturbation[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2): 365-389. doi: 10.1016/j.jcmgh.2020.03.008

    [17]

    Strigli A, Gopalakrishnan S, Zeissig Y, et al. Deficiency in X-linked inhibitor of apoptosis protein promotes susceptibility to microbial triggers of intestinal inflammation[J]. Sci Immunol, 2021, 6(65): eabf7473. doi: 10.1126/sciimmunol.abf7473

    [18]

    Baumgart DC, Le Berre C. Newer biologic and small-molecule therapies for inflammatory bowel disease[J]. N Engl J Med, 2021, 385(14): 1302-1315. doi: 10.1056/NEJMra1907607

    [19]

    Hawkey CJ, Allez M, Clark MM, et al. Autologous hematopoetic stem cell transplantation for refractory crohn disease: a randomized clinical trial[J]. JAMA, 2015, 314(23): 2524-2534. doi: 10.1001/jama.2015.16700

    [20]

    Lindsay JO, Allez M, Clark M, et al. Autologous stem-cell transplantation in treatment-refractory Crohn’s disease: an analysis of pooled data from the ASTIC trial[J]. Lancet Gastroenterol Hepatol, 2017, 2(6): 399-406. doi: 10.1016/S2468-1253(17)30056-0

    [21]

    Lightner AL, Dadgar N, Matyas C, et al. A phase IB/IIA study of remestemcel-L, an allogeneic bone marrow-derived mesenchymal stem cell product, for the treatment of medically refractory ulcerative colitis: an interim analysis[J]. Colorectal Dis, 2022, 24(11): 1358-1370. doi: 10.1111/codi.16239

    [22]

    Grégoire C, Lechanteur C, Briquet A, et al. Review article: mesenchymal stromal cell therapy for inflammatory bowel diseases[J]. Aliment Pharmacol Ther, 2017, 45(2): 205-221. doi: 10.1111/apt.13864

    [23]

    Forbes GM, Sturm MJ, Leong RW, et al. A phase 2 study of allogeneic mesenchymal stromal cells for luminal Crohn’s disease refractory to biologic therapy[J]. Clin Gastroenterol Hepatol, 2014, 12(1): 64-71. doi: 10.1016/j.cgh.2013.06.021

    [24]

    Martin JC, Chang C, Boschetti G, et al. Single-cell analysis of Crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-TNF therapy[J]. Cell, 2019, 178(6): 1493-1508. e20.

    [25]

    Friedrich M, Pohin M, Jackson MA, et al. IL-1-driven stromal-neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies[J]. Nat Med, 2021, 27(11): 1970-1981. doi: 10.1038/s41591-021-01520-5

    [26]

    West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease[J]. Nat Med, 2017, 23(5): 579-589. doi: 10.1038/nm.4307

    [27]

    Xu CC, Feng C, Huang PQ, et al. TNF-α and IFN-γ rapidly activate PI3K-AKT signaling to drive glycolysis that confers mesenchymal stem cells enhanced anti-inflammatory property[J]. Stem Cell Res Ther, 2022, 13(1): 491. doi: 10.1186/s13287-022-03178-3

    [28]

    Song WJ, Li Q, Ryu MO, et al. TSG-6 released from intraperitoneally injected canine adipose tissue-derived mesenchymal stem cells ameliorate inflammatory bowel disease by inducing M2 macrophage switch in mice[J]. Stem Cell Res Ther, 2018, 9(1): 91. doi: 10.1186/s13287-018-0841-1

    [29]

    Qi LL, Wu J, Zhu S, et al. Mesenchymal stem cells alleviate inflammatory bowel disease via Tr1 cells[J]. Stem Cell Rev Rep, 2022, 18(7): 2444-2457. doi: 10.1007/s12015-022-10353-9

    [30]

    Akiyama K, Chen C, Wang DD, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/ FAS-mediated T cell apoptosis[J]. Cell Stem Cell, 2012, 10(5): 544-555. doi: 10.1016/j.stem.2012.03.007

    [31]

    Schwartz DA, Loftus EV Jr, Tremaine WJ, et al. The natural history of fistulizing Crohn’s disease in Olmsted County, Minnesota[J]. Gastroenterology, 2002, 122(4): 875-880. doi: 10.1053/gast.2002.32362

    [32]

    Bouguen G, Siproudhis L, Gizard E, et al. Long-term outcome of perianal fistulizing Crohn’s disease treated with infliximab[J]. Clin Gastroenterol Hepatol, 2013, 11(8): 975-981. e1-4.

    [33]

    Reenaers C, Gillard RP, Coimbra C, et al. Clinical and MRI evolution after local injection of bone marrow-derived mesenchymal stem cells in perianal fistulae in Crohn’s disease: results from a prospective monocentric study[J]. J Crohns Colitis, 2023, 17(5): 728-737. doi: 10.1093/ecco-jcc/jjac192

    [34]

    Panés J, García-Olmo D, van Assche G, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn’s disease: a phase 3 randomised, double-blind controlled trial[J]. Lancet, 2016, 388(10051): 1281-1290. doi: 10.1016/S0140-6736(16)31203-X

    [35]

    Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease[J]. Gut, 2011, 60(6): 788-798. doi: 10.1136/gut.2010.214841

    [36]

    Cho YB, Park KJ, Yoon SN, et al. Long-term results of adipose-derived stem cell therapy for the treatment of Crohn’s fistula[J]. Stem Cells Transl Med, 2015, 4(5): 532-537. doi: 10.5966/sctm.2014-0199

    [37]

    Bataille F, Klebl F, Rümmele P, et al. Morphological characterisation of Crohn’s disease fistulae[J]. Gut, 2004, 53(9): 1314-1321. doi: 10.1136/gut.2003.038208

    [38]

    Alexander M, Ang QY, Nayak RR, et al. Human Gut bacterial metabolism drives Th17 activation and colitis[J]. Cell Host Microbe, 2022, 30(1): 17-30. e9.

    [39]

    Barnhoorn MC, van der Meulen-de Jong AE, Schrama ECLM, et al. Cytokine mixtures mimicking the local milieu in patients with inflammatory bowel disease impact phenotype and function of mesenchymal stromal cells[J]. Stem Cells Transl Med, 2022, 11(9): 932-945. doi: 10.1093/stcltm/szac054

    [40]

    Li Y, Altemus J, Lightner AL. Mesenchymal stem cells and acellular products attenuate murine induced colitis[J]. Stem Cell Res Ther, 2020, 11(1): 515. doi: 10.1186/s13287-020-02025-7

    [41]

    Wang GY, Joel MDM, Yuan JT, et al. Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease by inhibiting ERK phosphorylation in neutrophils[J]. Inflammopharmacology, 2020, 28(2): 603-616. doi: 10.1007/s10787-019-00683-5

    [42]

    Kim HS, Shin TH, Lee BC, et al. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2[J]. Gastroenterology, 2013, 145(6): 1392-1403. e1-8.

    [43] Mei HF, Sun LX, Jiang ZZ, et al. Sphingosine 1-phosphate signaling pathway: a novel target for regulation of epithelial and endothelial barrier function[J]. J China Pharm Univ (中国药科大学学报), 2016, 47(6): 654-660.
    [44]

    Yousefi-Ahmadipour A, Rashidian A, Mirzaei MR, et al. Combination therapy of mesenchymal stromal cells and sulfasalazine attenuates trinitrobenzene sulfonic acid induced colitis in the rat: the S1P pathway[J]. J Cell Physiol, 2019, 234(7): 11078-11091. doi: 10.1002/jcp.27944

    [45]

    Tian J, Zhu QG, Zhang YD, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis via modulating Th1/Th17 and Treg cell responses[J]. Front Immunol, 2020, 11: 598322. doi: 10.3389/fimmu.2020.598322

    [46]

    Webb TL, Webb CB. Comparing adipose-derived mesenchymal stem cells with prednisolone for the treatment of feline inflammatory bowel disease[J]. J Feline Med Surg, 2022, 24(8): e244-e250. doi: 10.1177/1098612X221104053

    [47]

    Freitas Alves VBF, de Sousa BC, Fonseca MTC, et al. A single administration of human adipose tissue-derived mesenchymal stromal cells (MSC) induces durable and sustained long-term regulation of inflammatory response in experimental colitis[J]. Clin Exp Immunol, 2019, 196(2): 139-154. doi: 10.1111/cei.13262

    [48]

    Fan HY, Zhao GF, Liu L, et al. Pre-treatment with IL-1β enhances the efficacy of MSC transplantation in DSS-induced colitis[J]. Cell Mol Immunol, 2012, 9(6): 473-481. doi: 10.1038/cmi.2012.40

    [49]

    Duijvestein M, Wildenberg ME, Welling MM, et al. Pretreatment with interferon-γ enhances the therapeutic activity of mesenchymal stromal cells in animal models of colitis[J]. Stem Cells, 2011, 29(10): 1549-1558. doi: 10.1002/stem.698

    [50]

    Takenaka K, Ohtsuka K, Fujii T, et al. Deep neural network accurately predicts prognosis of ulcerative colitis using endoscopic images[J]. Gastroenterology, 2021, 160(6): 2175-2177. e3.

    [51]

    Fernandes SR, Serrazina J, Botto IA, et al. Transmural remission improves clinical outcomes up to 5years in Crohn’s disease[J]. United European Gastroenterol J, 2023, 11(1): 51-59. doi: 10.1002/ueg2.12356

    [52]

    Schnitzler F, Fidder H, Ferrante M, et al. Mucosal healing predicts long-term outcome of maintenance therapy with infliximab in Crohn’s disease[J]. Inflamm Bowel Dis, 2009, 15(9): 1295-1301. doi: 10.1002/ibd.20927

    [53]

    Danese S, Vermeire S, D’Haens G, et al. Treat to target versus standard of care for patients with Crohn’s disease treated with ustekinumab (STARDUST): an open-label, multicentre, randomised phase 3b trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(4): 294-306. doi: 10.1016/S2468-1253(21)00474-X

    [54]

    Manieri NA, Mack MR, Himmelrich MD, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis[J]. J Clin Invest, 2015, 125(9): 3606-3618. doi: 10.1172/JCI81423

    [55]

    Yang HS, Feng R, Fu QL, et al. Human induced pluripotent stem cell-derived mesenchymal stem cells promote healing via TNF-α-stimulated gene-6 in inflammatory bowel disease models[J]. Cell Death Dis, 2019, 10(10): 718. doi: 10.1038/s41419-019-1957-7

    [56]

    Xu J, Wang XF, Chen JY, et al. Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice[J]. Theranostics, 2020, 10(26): 12204-12222. doi: 10.7150/thno.47683

    [57]

    Wang DD, Xue H, Tan JF, et al. Bone marrow mesenchymal stem cells-derived exosomes containing miR-539-5p inhibit pyroptosis through NLRP3/caspase-1 signalling to alleviate inflammatory bowel disease[J]. Inflamm Res, 2022, 71(7/8): 833-846.

    [58]

    Liang XN, Li CY, Song J, et al. HucMSC-exo promote mucosal healing in experimental colitis by accelerating intestinal stem cells and epithelium regeneration via Wnt signaling pathway[J]. Int J Nanomedicine, 2023, 18: 2799-2818. doi: 10.2147/IJN.S402179

    [59]

    Venkataramana S, Lourenssen S, Miller KG, et al. Early inflammatory damage to intestinal neurons occurs via inducible nitric oxide synthase[J]. Neurobiol Dis, 2015, 75: 40-52. doi: 10.1016/j.nbd.2014.12.014

    [60]

    Gulbransen BD, Bashashati M, Hirota SA, et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis[J]. Nat Med, 2012, 18(4): 600-604. doi: 10.1038/nm.2679

    [61]

    Dong Y, Fischer R, Naudé PJ, et al. Essential protective role of tumor necrosis factor receptor 2 in neurodegeneration[J]. Proc Natl Acad Sci U S A, 2016, 113(43): 12304-12309. doi: 10.1073/pnas.1605195113

    [62]

    Robinson AM, Rahman AA, Miller S, et al. The neuroprotective effects of human bone marrow mesenchymal stem cells are dose-dependent in TNBS colitis[J]. Stem Cell Res Ther, 2017, 8(1): 87. doi: 10.1186/s13287-017-0540-3

    [63]

    Louis E, Collard A, Oger AF, et al. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease[J]. Gut, 2001, 49(6): 777-782. doi: 10.1136/gut.49.6.777

    [64]

    de Bruyn JR, Meijer SL, Wildenberg ME, et al. Development of fibrosis in acute and longstanding ulcerative colitis[J]. J Crohns Colitis, 2015, 9(11): 966-972. doi: 10.1093/ecco-jcc/jjv133

    [65]

    D’Alessio S, Ungaro F, Noviello D, et al. Revisiting fibrosis in inflammatory bowel disease: the Gut thickens[J]. Nat Rev Gastroenterol Hepatol, 2022, 19(3): 169-184. doi: 10.1038/s41575-021-00543-0

    [66]

    Yang J, Zhou CZ, Zhu R, et al. MiR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition[J]. J Gastroenterol Hepatol, 2017, 32(12): 1966-1974. doi: 10.1111/jgh.13797

    [67]

    Ye YX, Zhang XM, Su DS, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn’s colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2, 3-dioxygenase-1 signaling[J]. Stem Cell Res Ther, 2022, 13(1): 465. doi: 10.1186/s13287-022-03157-8

    [68]

    Zheng XB, He XW, Zhang LJ, et al. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice[J]. Gastroenterol Rep, 2019, 7(2): 127-138. doi: 10.1093/gastro/goy017

    [69]

    Fu Y, Ni JJ, Chen JH, et al. Dual-functionalized MSCs that express CX3CR1 and IL-25 exhibit enhanced therapeutic effects on inflammatory bowel disease[J]. Mol Ther, 2020, 28(4): 1214-1228. doi: 10.1016/j.ymthe.2020.01.020

    [70]

    Li QJ, Lian YF, Deng YW, et al. mRNA-engineered mesenchymal stromal cells expressing CXCR2 enhances cell migration and improves recovery in IBD[J]. Mol Ther Nucleic Acids, 2021, 26: 222-236. doi: 10.1016/j.omtn.2021.07.009

    [71]

    Li X, Wang Q, Ding L, et al. Intercellular adhesion molecule-1 enhances the therapeutic effects of MSCs in a dextran sulfate sodium-induced colitis models by promoting MSCs homing to murine colons and spleens[J]. Stem Cell Res Ther, 2019, 10(1): 267. doi: 10.1186/s13287-019-1384-9

    [72]

    Ye TH, Liu X, Zhong XH, et al. Nongenetic surface engineering of mesenchymal stromal cells with polyvalent antibodies to enhance targeting efficiency[J]. Nat Commun, 2023, 14(1): 5806. doi: 10.1038/s41467-023-41609-8

    [73]

    Li L, Yao ZC, Parian A, et al. A nanofiber-hydrogel composite improves tissue repair in a rat model of Crohn’s disease perianal fistulas[J]. Sci Adv, 2023, 9(1): eade1067. doi: 10.1126/sciadv.ade1067

    [74] Wei M, Dang Y, Pu Z, et al. Pharmacokinetics and druggability evaluation of mesenchymal stem cells[J]. Drug Eval Res (药物评价研究), 2023, 46(7): 1587-1594.
    [75] Wei N, Wang G, Zhang J. Advances in research on visualization of living cell drugs in vivo[J]. J China Pharm Univ(中国药科大学学报), 2022, 53(2): 156-163. doi: 10.11665/j.issn.1000-5048.20220204
    [76] Zhang Q, Luo X, Bao Y, et al. Research progress in biomimetic nano formulations of biofilms[J]. J China Pharm Univ(中国药科大学学报), 2023, 54(5): 544-552.
    [77]

    Wu H, Fan H, Shou ZX, et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1[J]. Int Immunopharmacol, 2019, 68: 204-212. doi: 10.1016/j.intimp.2018.12.043

    [78]

    Gan JJ, Sun LY, Chen GP, et al. Mesenchymal stem cell exosomes encapsulated oral microcapsules for acute colitis treatment[J]. Adv Healthc Mater, 2022, 11(17): e2201105. doi: 10.1002/adhm.202201105

    [79]

    Deng C, Hu YW, Conceição M, et al. Oral delivery of layer-by-layer coated exosomes for colitis therapy[J]. J Control Release, 2023, 354: 635-650. doi: 10.1016/j.jconrel.2023.01.017

    [80]

    Haneef K, Salim A, Hashim Z, et al. Chemical hypoxic preconditioning improves survival and proliferation of mesenchymal stem cells[J]. Appl Biochem Biotechnol, 2023.

    [81]

    Jin LH, Lu N, Zhang WX, et al. Altered properties of human adipose-derived mesenchymal stromal cell during continuous in vitro cultivation[J]. Cytotechnology, 2021, 73(4): 657-667. doi: 10.1007/s10616-021-00486-z

    [82]

    Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity[J]. Mol Ther, 2018, 26(12): 2838-2847. doi: 10.1016/j.ymthe.2018.09.015

    [83]

    Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750. doi: 10.1080/20013078.2018.1535750

图(3)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 网络出版日期:  2024-03-05
  • 刊出日期:  2024-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭