• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

基于CCL2/CCR2信号轴的肿瘤免疫治疗药物的研究进展

崔珍珍, 赵一凡, 孙玉, 孟佳怡, 康迪, 胡立宏

崔珍珍,赵一凡,孙玉,等. 基于CCL2/CCR2信号轴的肿瘤免疫治疗药物的研究进展[J]. 中国药科大学学报,2024,55(1):36 − 44. DOI: 10.11665/j.issn.1000-5048.2023112904
引用本文: 崔珍珍,赵一凡,孙玉,等. 基于CCL2/CCR2信号轴的肿瘤免疫治疗药物的研究进展[J]. 中国药科大学学报,2024,55(1):36 − 44. DOI: 10.11665/j.issn.1000-5048.2023112904
CUI Zhenzhen, ZHAO Yifan, SUN Yu, et al. Research progress of drugs for cancer immunotherapy based on CCL2/CCR2 signaling axis[J]. J China Pharm Univ, 2024, 55(1): 36 − 44. DOI: 10.11665/j.issn.1000-5048.2023112904
Citation: CUI Zhenzhen, ZHAO Yifan, SUN Yu, et al. Research progress of drugs for cancer immunotherapy based on CCL2/CCR2 signaling axis[J]. J China Pharm Univ, 2024, 55(1): 36 − 44. DOI: 10.11665/j.issn.1000-5048.2023112904

基于CCL2/CCR2信号轴的肿瘤免疫治疗药物的研究进展

基金项目: 国家自然科学基金项目(No.82104270);江苏省研究生实践创新计划项目(KYCX22_2035)
详细信息
    作者简介:

    康迪,讲师,博士毕业于南京大学生物学专业。主要研究方向为药理学及药物筛选模型建立与药效评价。主持国家自然科学基金青年科学基金项目1项,参与项目多项。在Developmental CellJ Med ChemEur J Med Chem等高水平期刊上发表论文10余篇,获得授权专利3项

    胡立宏,研究员,博士生导师,南京中医药大学副校长,江苏省中药功效物质重点实验室主任。主要研究方向为基于中药量丰成分和老药的药物发现研究。国家杰出青年科学基金获得者,入选“国家百千万人才工程”,获得“国家有突出贡献中青年专家”荣誉称号等。在 Angew Chem Int EdNat CommunActa Pharm Sin BJ Med Chem 等领域内专业期刊上发表了 SCI 论文300余篇,以第一发明人基于老药舒尼替尼结构研发的新型 FLT3 抑制剂 XY0206 已进入Ⅲ期临床试验,相关研究曾获国家科技进步二等奖、上海市科技进步奖一等奖、江苏省研究生教育改革成果奖二等奖,连续多年入选Elservier 高被引学者榜单

    通讯作者:

    康迪: Tel:13814514670  E-mail:kangdi@njucm.edu.cn

    胡立宏: Tel:025-85811196 E-mail:lhhu@njucm.edu.cn

  • 中图分类号: R979.1

Research progress of drugs for cancer immunotherapy based on CCL2/CCR2 signaling axis

Funds: This work was supported by the National Natural Science Foundation of China (No. 82104270) and the Graduate Research and Innovation Projects of Jiangsu Province (KYCX22_2035)
  • 摘要:

    趋化因子配体2(C-C motif chemokine ligand 2,CCL2)及其受体CCR2与肿瘤的发生、发展密切相关。CCL2/CCR2信号轴通过多种机制促进肿瘤进展,一方面CCL2与肿瘤细胞表面的CCR2结合促进肿瘤的生长/存活和转移;更为重要的是CCL2可以招募多种免疫抑制细胞在肿瘤微环境中聚集,抑制免疫细胞的功能和活性,促进肿瘤进展。本文综述了CCL2/CCR2信号轴以及其在肿瘤及肿瘤微环境中的作用,并重点介绍了靶向CCL2/CCR2信号轴药物的临床研究进展,以期深入并全面了解CCL2/CCR2信号轴在肿瘤进展中的作用机制,开发更有效的肿瘤免疫治疗药物。

    Abstract:

    C-C motif chemokine ligand 2 (CCL2) and its receptor CCR2 are closely related to tumorigenesis and tumor progression. The CCL2/CCR2 signaling axis promotes tumor progression through multiple mechanisms: CCL2 binds to CCR2 on the surface of tumor cells, and thus promotes tumor growth/survival and metastasis; more importantly, CCL2 recruits a variety of immunosuppressive cells to aggregate in the tumor microenvironment, and inhibits the function and activity of immune cells, promoting tumor progression. The article reviews the CCL2/CCR2 signaling axis and its role in tumors and tumor microenvironment, with particular focus on the advances in clinical research on drugs targeting CCL2/CCR2 signaling axis, in order to gain an in-depth and overall understanding of the mechanism of action of CCL2/CCR2 axis in tumor progression and develop more effective anti-tumor immunotherapeutic agents.

  • Figure  1.   CCL2/CCR2 signaling axis in tumor progression. Once CCL2 binds to CCR2 receptor on the surface of tumor cells, a series of downstream transduction pathways are activated, such as JAK/STAT, PI3K/AKT,MAPK and Hedgehog,promoting the growth, proliferation, survival, migration/invasion, angiogenesis of tumor cells

    CCL2: C-C motif chemokine ligand 2; CCR2: C-C motif chemokine receptor 2; JAK: Janus kinase; STAT3/5: Signal transducer and activator of transcription 3/5; Smo: Smoothened; Gli-1: Gli family zinc finger 1; PI3K: Phosphoinositide 3-kinase; AKT: Protein kinase B(PKB); mTORC1: Mechanistic target of rapamycin complex 1; PARP: poly ADP-ribose polymerase; RAS/RAF: Rat sarcoma/Rapidly accelerated fibrosarcoma; MEK1/2: Mitogen-activated extracellular signal-regulated kinase1/2; ERK1/2: Extracellular signal-regulated kinase1/2

    Figure  2.   Role of the CCL2/CCR2 signaling axis in the tumor microenvironment

    NK cell: Natural killer cell; T cell: T-lymphocyte; DC cell: Dendritic cell; MDSC: Myeloid-derived suppressor cell; Treg: Regulatory T cells; TAM: Tumor-associated macrophages; TAN: Tumor-associated neutrophil; CAF: Cancer-associated fibroblasts; ECs: Endothelial cells; Th2: Helper T lymphocyte 2

  • [1]

    Tian X, Wang JY, Jiang LX, et al. Chemokine/GPCR signaling-mediated EMT in cancer metastasis[J]. J Oncol, 2022, 2022: 2208176.

    [2]

    O’Connor T, Borsig L, Heikenwalder M. CCL2-CCR2 signaling in disease pathogenesis[J]. Endocr Metab Immune Disord Drug Targets, 2015, 15(2): 105-118. doi: 10.2174/1871530315666150316120920

    [3]

    Ermakov EA, Mednova IA, Boiko AS, et al. Chemokine dysregulation and neuroinflammation in schizophrenia: a systematic review[J]. Int J Mol Sci, 2023, 24(3): 2215. doi: 10.3390/ijms24032215

    [4]

    Zhang HX, Yang K, Chen F, et al. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications[J]. Front Immunol, 2022, 13: 975367. doi: 10.3389/fimmu.2022.975367

    [5]

    He SY, Yao L, Li J. Role of MCP-1/CCR2 axis in renal fibrosis: mechanisms and therapeutic targeting[J]. Medicine, 2023, 102(42): e35613. doi: 10.1097/MD.0000000000035613

    [6]

    Moadab F, Khorramdelazad H, Abbasifard M. Role of CCL2/CCR2 axis in the immunopathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches[J]. Life Sci, 2021, 269: 119034. doi: 10.1016/j.lfs.2021.119034

    [7]

    Hu QQ, Wen ZF, Huang QT, et al. CC chemokine receptor 2 (CCR2) expression promotes diffuse large B-Cell lymphoma survival and invasion[J]. Lab Investig, 2022, 102: 1377-1388. doi: 10.1038/s41374-022-00824-5

    [8]

    Liu W, Wang L, Zhang JJ, et al. CC chemokine 2 promotes ovarian cancer progression through the MEK/ERK/MAP3K19 signaling pathway[J]. Int J Mol Sci, 2023, 24(13): 10652. doi: 10.3390/ijms241310652

    [9]

    Wolf MJ, Hoos A, Bauer J, et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway[J]. Cancer Cell, 2012, 22(1): 91-105. doi: 10.1016/j.ccr.2012.05.023

    [10]

    Kadomoto S, Izumi K, Mizokami A. Roles of CCL2-CCR2 axis in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(16): 8530. doi: 10.3390/ijms22168530

    [11]

    Ahmad Mir M, Jan U, Ishfaq. CCL2–CCR2 signaling axis in cancer[M]//Mir MA. Cytokine and Chemokine Networks in Cancer. Singapore: Springer, 2023: 241-270.

    [12]

    Sugiyama S, Yumimoto K, Fujinuma S, et al. Identification of effective CCR2 inhibitors for cancer therapy using humanized mice[J]. J Biochem, 2023: mvad086.

    [13]

    Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via phosphatidylinositol 3-kinase/AKT-dependent survivin up-regulation[J]. J Biol Chem, 2008, 283(36): 25057-25073. doi: 10.1074/jbc.M801073200

    [14]

    Xu WX, Wei Q, Han MJ, et al. CCL2-SQSTM1 positive feedback loop suppresses autophagy to promote chemoresistance in gastric cancer[J]. Int J Biol Sci, 2018, 14(9): 1054-1066. doi: 10.7150/ijbs.25349

    [15]

    Wang T, Zhan QY, Peng XD, et al. CCL2 influences the sensitivity of lung cancer A549 cells to docetaxel[J]. Oncol Lett, 2018, 16(1): 1267-1274.

    [16]

    Natsagdorj A, Izumi K, Hiratsuka K, et al. CCL2 induces resistance to the antiproliferative effect of cabazitaxel in prostate cancer cells[J]. Cancer Sci, 2019, 110(1): 279-288. doi: 10.1111/cas.13876

    [17]

    Fang WB, Sofia Acevedo D, Smart C, et al. Expression of CCL2/CCR2 signaling proteins in breast carcinoma cells is associated with invasive progression[J]. Sci Rep, 2021, 11(1): 8708. doi: 10.1038/s41598-021-88229-0

    [18]

    Liu W, Wang L, Zhang JJ, et al. Purification of recombinant human chemokine CCL2 in E. coli and its function in ovarian cancer[J]. 3 Biotech, 2021, 11(1): 8. doi: 10.1007/s13205-020-02571-0

    [19]

    Liu MM, Yang J, Xu BS, et al. Tumor metastasis: Mechanistic insights and therapeutic interventions[J]. MedComm, 2021, 2(4): 587-617. doi: 10.1002/mco2.100

    [20]

    Zhuang HJ, Cao G, Kou CH, et al. CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition invitro through activation of the Hedgehog pathway[J]. Oncol Rep, 2018, 39(1): 21-30.

    [21]

    Yang J, Lv X, Chen JN, et al. CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway[J]. Oncotarget, 2016, 7(13): 15632-15647. doi: 10.18632/oncotarget.6695

    [22]

    Liu JF, Chen PC, Chang TM, et al. Monocyte chemoattractant protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma[J]. J Exp Clin Cancer Res, 2020, 39(1): 254. doi: 10.1186/s13046-020-01756-y

    [23]

    Li S, Lu J, Chen Y, et al. MCP-1-induced ERK/GSK-3β/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells[J]. Cell Mol Immunol, 2017, 14(7): 621-630. doi: 10.1038/cmi.2015.106

    [24]

    Liu J, Chen S, Wang W, et al. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways[J]. Cancer Lett, 2016, 379(1): 49-59. doi: 10.1016/j.canlet.2016.05.022

    [25]

    Siddiqui JA, Seshacharyulu P, Muniyan S, et al. GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation[J]. Bone Res, 2022, 10(1): 6. doi: 10.1038/s41413-021-00178-6

    [26]

    Adinew GM, Messeha S, Taka E, et al. Thymoquinone inhibition of chemokines in TNF-α-induced inflammatory and metastatic effects in triple-negative breast cancer cells[J]. Int J Mol Sci, 2023, 24(12): 9878. doi: 10.3390/ijms24129878

    [27]

    Yoshimura T, Li CN, Wang YZ, et al. The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis[J]. Cell Mol Immunol, 2023, 20(7): 714-738. doi: 10.1038/s41423-023-01013-0

    [28]

    Cho HR, Kumari N, Thi Vu H, et al. Increased antiangiogenic effect by blocking CCL2-dependent macrophages in a rodent glioblastoma model: correlation study with dynamic susceptibility contrast perfusion MRI[J]. Sci Rep, 2019, 9(1): 11085. doi: 10.1038/s41598-019-47438-4

    [29]

    Yang XQ, Lu PR, Ishida Y, et al. Attenuated liver tumor formation in the absence of CCR2 with a concomitant reduction in the accumulation of hepatic stellate cells, macrophages and neovascularization[J]. Int J Cancer, 2006, 118(2): 335-345. doi: 10.1002/ijc.21371

    [30]

    Huang XQ, Cao JS, Zu XY. Tumor-associated macrophages: an important player in breast cancer progression[J]. Thorac Cancer, 2022, 13(3): 269-276. doi: 10.1111/1759-7714.14268

    [31]

    Su WJ, Han HH, Wang Y, et al. The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression[J]. Cancer Cell, 2019, 36(2): 139-155. e10.

    [32]

    Goenka A, Khan F, Verma B, et al. Tumor microenvironment signaling and therapeutics in cancer progression[J]. Cancer Commun, 2023, 43(5): 525-561. doi: 10.1002/cac2.12416

    [33]

    Shu YH, Cheng P. Targeting tumor-associated macrophages for cancer immunotherapy[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188434. doi: 10.1016/j.bbcan.2020.188434

    [34]

    Xu MS, Wang Y, Xia RL, et al. Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting[J]. Cell Prolif, 2021, 54(10): e13115. doi: 10.1111/cpr.13115

    [35]

    Han CY, Zhong JY, Hu JQ, et al. Single-sample node entropy for molecular transition in pre-deterioration stage of cancer[J]. Front Bioeng Biotechnol, 2020, 8: 809. doi: 10.3389/fbioe.2020.00809

    [36]

    Liu CF, Zhang WH, Wang JF, et al. Tumor-associated macrophage-derived transforming growth factor-β promotes colorectal cancer progression through HIF1-TRIB3 signaling[J]. Cancer Sci, 2021, 112(10): 4198-4207. doi: 10.1111/cas.15101

    [37]

    Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3): 633-642.

    [38]

    Pan YY, Yu YD, Wang XJ, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084. doi: 10.3389/fimmu.2020.583084

    [39]

    Zhu SP, Liu M, Bennett S, et al. The molecular structure and role of CCL2 (MCP-1) and C-C chemokine receptor CCR2 in skeletal biology and diseases[J]. J Cell Physiol, 2021, 236(10): 7211-7222. doi: 10.1002/jcp.30375

    [40]

    Rashid MH, Borin TF, Ara R, et al. Critical immunosuppressive effect of MDSC-derived exosomes in the tumor microenvironment[J]. Oncol Rep, 2021, 45(3): 1171-1181. doi: 10.3892/or.2021.7936

    [41]

    Tcyganov E, Mastio J, Chen E, et al. Plasticity of myeloid-derived suppressor cells in cancer[J]. Curr Opin Immunol, 2018, 51: 76-82. doi: 10.1016/j.coi.2018.03.009

    [42]

    Tumino N, di Pace AL, Besi F, et al. Interaction between MDSC and NK cells in solid and hematological malignancies: impact on HSCT[J]. Front Immunol, 2021, 12: 638841. doi: 10.3389/fimmu.2021.638841

    [43]

    Groth C, Hu XY, Weber R, et al. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression[J]. Br J Cancer, 2019, 120: 16-25. doi: 10.1038/s41416-018-0333-1

    [44]

    Nagaraj S, Schrum AG, Cho HI, et al. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells[J]. J Immunol, 2010, 184(6): 3106-3116. doi: 10.4049/jimmunol.0902661

    [45]

    Chun E, Lavoie S, Michaud M, et al. CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function[J]. Cell Rep, 2015, 12(2): 244-257. doi: 10.1016/j.celrep.2015.06.024

    [46]

    Gu HT, Deng WS, Zheng Z, et al. CCL2 produced by pancreatic ductal adenocarcinoma is essential for the accumulation and activation of monocytic myeloid-derived suppressor cells[J]. Immun Inflamm Dis, 2021, 9(4): 1686-1695. doi: 10.1002/iid3.523

    [47]

    Vetsika EK, Koukos A, Kotsakis A. Myeloid-derived suppressor cells: major figures that shape the immunosuppressive and angiogenic network in cancer[J]. Cells, 2019, 8(12): 1647. doi: 10.3390/cells8121647

    [48]

    Ben Khelil M, Godet Y, Abdeljaoued S, et al. Harnessing antitumor CD4+ T cells for cancer immunotherapy[J]. Cancers, 2022, 14(1): 260. doi: 10.3390/cancers14010260

    [49]

    Maimela NR, Liu SS, Zhang Y. Fates of CD8+ T cells in tumor microenvironment[J]. Comput Struct Biotechnol J, 2019, 17: 1-13. doi: 10.1016/j.csbj.2018.11.004

    [50]

    Luther SA, Cyster JG. Chemokines as regulators of T cell differentiation[J]. Nat Immunol, 2001, 2(2): 102-107. doi: 10.1038/84205

    [51]

    Ge YZ, Böhm HH, Rathinasamy A, et al. Tumor-specific regulatory T cells from the bone marrow orchestrate antitumor immunity in breast cancer[J]. Cancer Immunol Res, 2019, 7(12): 1998-2012. doi: 10.1158/2326-6066.CIR-18-0763

    [52]

    Loyher PL, Rochefort J, Baudesson de Chanville C, et al. CCR2 influences T regulatory cell migration to tumors and serves as a biomarker of cyclophosphamide sensitivity[J]. Cancer Res, 2016, 76(22): 6483-6494. doi: 10.1158/0008-5472.CAN-16-0984

    [53]

    Jiang XJ, Wang J, Deng XY, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape[J]. Mol Cancer, 2019, 18(1): 10. doi: 10.1186/s12943-018-0928-4

    [54]

    Yi M, Zheng XL, Niu MK, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022, 21(1): 28. doi: 10.1186/s12943-021-01489-2

    [55]

    Li XC, He GJ, Liu JC, et al. CCL2-mediated monocytes regulate immune checkpoint blockade resistance in pancreatic cancer[J]. Int Immunopharmacol, 2022, 106: 108598. doi: 10.1016/j.intimp.2022.108598

    [56]

    Pu YZ, Ji Q. Tumor-associated macrophages regulate PD-1/PD-L1 immunosuppression[J]. Front Immunol, 2022, 13: 874589. doi: 10.3389/fimmu.2022.874589

    [57]

    Tu MM, Abdel-Hafiz HA, Jones RT, et al. Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy[J]. Commun Biol, 2020, 3(1): 720. doi: 10.1038/s42003-020-01441-y

    [58]

    Flores-Toro JA, Luo DF, Gopinath A, et al. CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas[J]. Proc Natl Acad Sci U S A, 2020, 117(2): 1129-1138. doi: 10.1073/pnas.1910856117

    [59]

    Wang Y, Zhang XK, Yang LL, et al. Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer[J]. J Bone Oncol, 2018, 11: 27-32. doi: 10.1016/j.jbo.2018.01.002

    [60]

    Shi LR, Wang JJ, Ding NH, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy[J]. Nat Commun, 2019, 10(1): 5421. doi: 10.1038/s41467-019-13204-3

    [61]

    Sandhu SK, Papadopoulos K, Fong PC, et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors[J]. Cancer Chemother Pharmacol, 2013, 71(4): 1041-1050. doi: 10.1007/s00280-013-2099-8

    [62]

    Rasmussen RK, Etzerodt A. Therapeutic targeting of tumor-associated macrophages[J]. Adv Pharmacol, 2021, 91: 185-211.

    [63]

    Lim SY, Yuzhalin AE, Gordon-Weeks AN, et al. Targeting the CCL2-CCR2 signaling axis in cancer metastasis[J]. Oncotarget, 2016, 7(19): 28697-28710. doi: 10.18632/oncotarget.7376

  • 期刊类型引用(2)

    1. 梁玉洁,邹俊波,张小飞,彭磊,张雪,陈志泽,郭东艳,杨艳君,周晓,刘琳,史亚军,雷根平. 润肺宁神方治疗新型冠状病毒肺炎致失眠的网络药理学机制. 西北药学杂志. 2022(06): 81-88 . 百度学术
    2. 刘晓龙,李春燕,薛金涛. 金银花主要活性成分及药理作用研究进展. 新乡医学院学报. 2021(10): 992-995 . 百度学术

    其他类型引用(3)

图(2)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  54
  • PDF下载量:  30
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-11-28
  • 网络出版日期:  2024-03-05
  • 刊出日期:  2024-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭