• 中国中文核心期刊
  • 中国科学引文数据库核心期刊
  • 中国科技核心期刊
  • 中国高校百佳科技期刊
高级检索

cGAS-STING信号通路调节剂在免疫治疗中的研究进展

娄方宁, 郑明月, 陈凯先, 张素林

娄方宁,郑明月,陈凯先,等. cGAS-STING信号通路调节剂在免疫治疗中的研究进展[J]. 中国药科大学学报,2024,55(1):15 − 25. DOI: 10.11665/j.issn.1000-5048.2023112402
引用本文: 娄方宁,郑明月,陈凯先,等. cGAS-STING信号通路调节剂在免疫治疗中的研究进展[J]. 中国药科大学学报,2024,55(1):15 − 25. DOI: 10.11665/j.issn.1000-5048.2023112402
LOU Fangning, ZHENG Mingyue, CHEN Kaixian, et al. Research progress of cGAS-STING signaling pathway modulators in immunotherapy[J]. J China Pharm Univ, 2024, 55(1): 15 − 25. DOI: 10.11665/j.issn.1000-5048.2023112402
Citation: LOU Fangning, ZHENG Mingyue, CHEN Kaixian, et al. Research progress of cGAS-STING signaling pathway modulators in immunotherapy[J]. J China Pharm Univ, 2024, 55(1): 15 − 25. DOI: 10.11665/j.issn.1000-5048.2023112402

cGAS-STING信号通路调节剂在免疫治疗中的研究进展

基金项目: 国家自然科学基金项目(No. T2225002;82273855);国家重点研发计划项目(No. 2022YFC3400504);中国科学院青年创新促进会资助项目(No. 2023296);上海市自然科学基金项目(No. 22ZR1474300)
详细信息
    作者简介:

    陈凯先,博士,中国科学院院士,中国科学院上海药物所研究员,上海中医药大学教授、学术委员会主任,中国药学会和中国中西医结合学会名誉会长。曾任中国科学院上海药物所所长、上海中医药大学校长,上海市科学技术协会主席,国家药典委员会副主任委员,中国药学会副理事长和监事长,中国中西医结合学会会长,中华中医药学会副会长。陈凯先院士长期从事药物化学和创新药物研究,是我国药物构-效关系和药物分子设计研究领域的重要开拓者之一。他与研究组同事一起提出和改进了多种计算机辅助药物设计的方法和技术,并应用于多种药物与生物大分子相互作用的分子模拟理论研究和新药发现。近年来,积极参与和推动大数据和人工智能技术赋能新药研发的方法和应用研究。获得多项科技奖励和荣誉称号,为我国生物医药创新和推动中药现代化、国际化做出了贡献

    张素林,中国科学院上海药物研究所副研究员,硕士生导师。2018年毕业于复旦大学并获得药理学博士学位,随后加入上海药物研究所从事博士后研究,并于2020年晋升为副研究员。研究领域为:药理学与化学生物学。通过利用人工智能药物设计算法以及运用药理学和化学生物学等多学科交叉研究手段,开展重大慢性疾病新靶标与新机制的活性化合物发现,以及重要功能小分子的新靶标发现和确证研究,获得原创药物先导分子。近三年来,以通讯或第一作者(含共同)在Nat CommunAutophagyProtein CellEMBO RepActa Pharm Sin BJ Med Chem等杂志发表SCI论文20余篇。已参与申请发明专利15项,其中2项已获授权。近年来已入选中国科协“青年人才托举工程”、中国科学院“青年创新促进会”会员、上海市“青年科技英才扬帆计划”、上海市“超级博士后”人才计划

    通讯作者:

    陈凯先: Tel:021-68077828 E-mail:kxchen@simm.ac.cn

    张素林: Tel:021-68077844 E-mail:slzhang@simm.ac.cn

  • 中图分类号: R914.2

Research progress of cGAS-STING signaling pathway modulators in immunotherapy

Funds: This study was supported by the National Natural Science Foundation of China (No. T2225002, No.82273855); the National Key Research and Development Program of China (No. 2022YFC3400504); CAS Youth Innovation Promotion Association (No. 2023296); and the Natural Science Foundation of Shanghai (No. 22ZR1474300)
  • 摘要:

    环鸟嘌呤-腺嘌呤核苷酸合成酶(cGAS)-干扰素基因刺激蛋白(STING)信号通路感知细胞质中的异常双链DNA后,诱导Ⅰ型干扰素(IFN- Ⅰ )和促炎细胞因子表达,从而激活宿主的免疫应答,增强机体抗肿瘤免疫反应和抗病原体感染。但是,cGAS-STING信号通路的持续激活会驱动自身免疫性疾病、衰老相关炎症和神经退行性病变等疾病。本文阐述了cGAS-STING信号通路参与调控多种免疫相关性疾病发生发展的机制,重点回顾了STING激动剂、cGAS抑制剂以及STING抑制剂的研发进展,为cGAS-STING调节剂的研发提供更多理论参考。

    Abstract:

    Upon monitoring cytoplasmic aberrant double-stranded DNA, cGAS-STING signaling pathway induces the expression of type I interferons and pro-inflammatory cytokines, which activates the host immune response and enhances anti-tumor immune response and resistance to pathogen infection. However, sustained activation of the cGAS-STING signaling pathway drives diseases such as autoimmune diseases, aging-associated inflammation, and neurodegenerative pathologies. Herein, we describe the mechanism by which cGAS-STING signaling pathway participates in regulating the development of various immune-related diseases, with a particular review of the research and development progress of STING agonists, cGAS inhibitors, and STING inhibitors, aiming to provide some theoretical reference for the future development of cGAS-STING modulators.

  • 图  1   cGAS-STING信号通路与相关疾病的示意图

    cGAS:环鸟嘌呤-腺嘌呤核苷酸合成酶;STING:干扰素基因刺激蛋白

    图  2   CDNs类代表性STING激动剂的结构

    图  3   非CDNs类代表性STING激动剂的结构

    图  4   代表性cGAS抑制剂的结构

    图  5   代表性STING抑制剂的结构

    表  1   cGAS-STING信号通路参与调控多种免疫相关疾病的发生发展

    疾病 疾病类型 与cGAS-STING信号通路的相关性 治疗方法 参考
    文献
    肿瘤 抑癌 激活cGAS-STING信号通路,激发级联抗肿瘤免疫反应 cGAS/STING激动剂 [11]
    促癌 cGAS-STING信号通路持续激活状态 cGAS/STING抑制剂 [1415]
    病原体感染 病毒 病毒的结构蛋白与STING相互作用,抑制STING通路的激活 cGAS/STING激动剂 [1617]
    细菌 抑制环状二核苷酸(CDNs)与STING蛋白结合 cGAS/STING激动剂 [21]
    真菌 STING转位到吞噬体,抑制Src相关的Syk磷酸化,从而抑制抗真菌天然免疫信号通路 cGAS/STING抑制剂 [22]
    自身免疫性疾病 STING相关血管病变 STING基因功能获得性突变 STING抑制剂 [23]
    Aicardi-Goutières综合征 核酸代谢紊乱有关的疾病 cGAS/STING抑制剂 [25]
    胶原诱导性关节炎 dsDNA异常积累促进STING异常激活 cGAS/STING抑制剂 [27]
    COPA综合征 STING在高尔基体积累并自激活 STING抑制剂 [28]
    系统性红斑狼疮 血清中cGAMP水平升高,促进cGAS-STING信号通路异常激活 cGAS/STING抑制剂 [29]
    类风湿关节炎 cGAS-STING信号通路异常激活 cGAS/STING抑制剂 [30]
    衰老 衰老 在cGAS缺陷或STING缺陷细胞/小鼠中观察到抗衰老保护作用 cGAS/STING抑制剂 [33]
    神经退行性病变 阿尔茨海默病 I型干扰素加重神经炎症并促进阿尔茨海默病发展 cGAS/STING抑制剂 [34]
    亨廷顿病 活性氧促进线粒体损伤,激活cGAS-STING信号通路 cGAS/STING抑制剂 [35]
    帕金森病 cGAS-STING信号通路长期激活导致帕金森病的恶化 cGAS/STING抑制剂 [36]
    共济失调-毛细血管扩张症 dsDNA激活cGAS-STING信号通路 cGAS/STING抑制剂 [37]
    下载: 导出CSV

    表  2   STING激动剂研发进展

    分类 化合物名称 适应证 给药方式 试验阶段 临床编号/参考文献
    CDNs类 ADU-S100 复发性或转移性头颈部鳞状细胞癌 瘤内注射 临床Ⅱ期(终止) NCT03937141
    MK-1454 头颈部鳞状细胞癌 瘤内注射 临床Ⅱ期 NCT04220866
    E7766 晚期实体瘤;淋巴瘤 瘤内注射 临床Ⅰ期 NCT04144140
    TAK-676 成人晚期或转移性实体瘤 静脉注射 临床Ⅰ期 NCT04420884
    SB11285 晚期或转移性实体瘤 静脉注射 临床Ⅰ期 NCT04096638
    BI1387446 晚期实体瘤 瘤内注射 临床Ⅰ期 NCT04147234
    IMSA101 晚期实体瘤 瘤内注射 临床Ⅰ/Ⅱ期 NCT04020185
    BMS-986301 晚期实体瘤 静脉、瘤内、肌肉注射 临床Ⅰ期 NCT03956680
    DN-015089 实体瘤 皮下、瘤内注射 临床Ⅰ期 CTR20212462
    非CDNs类 diABZI 结肠癌 腹腔注射 临床前 [10]
    SR-717 黑色素瘤 腹腔注射 临床前 [41]
    MSA-2 结肠癌 瘤内、皮下注射;口服 临床前 [42]
    SNX281 晚期实体瘤 静脉注射 临床Ⅰ期 NCT04609579
    HG381 晚期实体瘤 静脉注射 临床Ⅰ期 NCT04998422
    ONO-7914 晚期或转移性实体癌 - 临床Ⅰ期 jRCT2031210530
    KL340399 晚期实体瘤 瘤内注射 临床Ⅰ期 NCT05549804
    下载: 导出CSV

    表  3   cGAS抑制剂研发进展

    化合物名称    功 能 种属特异性 体内或体外模型    体内或体外活性 参考文献
    PF-06928215 抑制cGAS酶活 人源cGAS   -      - [43]
    CU-76 抑制cGAS酶活 人源cGAS THP-1细胞 抑制人源cGAS蛋白活性 [44]
    RU.521 抑制cGAS酶活 鼠源cGAS AGS小鼠模型 抑制I型干扰素的表达 [45]
    G150 抑制cGAS酶活 人源cGAS THP1细胞
    RAW 264.7细胞
    抑制dsDNA诱导的cGAS活性 [46]
    PAH 抑制cGAS酶活 人/鼠源cGAS AGS小鼠模型 改善自身DNA诱导的自身炎症反应 [47]
    奎纳克林、羟氯喹 抑制dsDNA/cGAS结合 人/鼠源cGAS Trex1−/−小鼠模型 对AGS/SLE小鼠的治疗有效 [48]
    Suramin 抑制dsDNA/cGAS结合 人源cGAS THP1细胞 抑制cGAS介导的I型干扰素反应 [49]
    VENT-03 抑制cGAS 人源cGAS Trex1−/−小鼠模型 抑制炎症,提高生存率 [8]
    下载: 导出CSV

    表  4   STING抑制剂研发进展

    化合物名称功 能种属特异性体内或体外模型体内或体外活性参考文献
    C-178, C-176抑制STING棕榈酰化鼠源Trex1−/−小鼠模型改善全身炎症[51]
    C-170, C-171抑制STING棕榈酰化人/鼠源Trex1−/−小鼠模型改善全身炎症[51]
    H-151抑制STING棕榈酰化人/鼠源Trex1−/−小鼠模型改善全身炎症[51]
    NO2-FAs抑制STING棕榈酰化人/鼠源SAVI患者成纤维细胞抑制IFN- Ⅰ的产生[52]
    4-OI阻断STING的棕榈酰化和寡聚化鼠源BMDMs细胞
    Raw264.7细胞
    MEFs细胞
    抑制cGAS-STING信号通路[53]
    BB-Cl-脒共价修饰Cys148抑制STING寡聚人/鼠源BMDMs细胞
    外周血单核细胞
    AGS的Trex1D18N/D18N小鼠模型
    抑制小鼠和人类细胞中STING的激活,提高小鼠存活率[54]
    LB244共价修饰C292来抑制STING寡聚人/鼠源人单核细胞
    BMDMs细胞
    阻断STING的共价修饰,抑制cGAS-STING信号通路[55]
    Astin C特异性结合STING的C端配体结合域人/鼠源Trex1−/−BMDMs细胞和Trex1−/−小鼠模型抑制IFN- Ⅰ和促炎细胞因子的表达并减轻自身炎症反应[56]
    Compound 18占据STING二聚体的结合口袋人/鼠源THP1细胞抑制cGAMP诱导的IFN-β的产生[57]
    SN-011与CDNs竞争STING内源性配体结合口袋人/鼠源Trex1−/−小鼠模型改善自身免疫疾病[58]
    下载: 导出CSV
  • [1] Mei JH, Hong Z, Wang C. Advances of drugs in targeting cGAS-STING signaling pathway[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(3): 249-259. doi: 10.11665/j.issn.1000-5048.20200301
    [2]

    O’Neill LAJ. DNA makes RNA makes innate immunity[J]. Cell, 2009, 138(3): 428-430. doi: 10.1016/j.cell.2009.07.021

    [3]

    Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008, 29(4): 538-550. doi: 10.1016/j.immuni.2008.09.003

    [4]

    Sun WX, Li Y, Chen L, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization[J]. Proc Natl Acad Sci USA, 2009, 106(21): 8653-8658.

    [5]

    Jin L, Waterman PM, Jonscher KR, et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class Ⅱ and mediates transduction of apoptotic signals[J]. Mol Cell Biol, 2008, 28(16): 5014-5026. doi: 10.1128/MCB.00640-08

    [6]

    Cheng ZL, Dai T, He XL, et al. The interactions between cGAS-STING pathway and pathogens[J]. Signal Transduct Target Ther, 2020, 5(1): 91. doi: 10.1038/s41392-020-0198-7

    [7]

    Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+dendritic cells[J]. J Exp Med, 2011, 208(10): 2005-2016. doi: 10.1084/jem.20101159

    [8]

    Mullard A. Biotechs step on cGAS for autoimmune diseases[J]. Nat Rev Drug Discov, 2023, 22(12): 939-941. doi: 10.1038/d41573-023-00185-8

    [9]

    Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity[J]. Cell Rep, 2015, 11(7): 1018-1030. doi: 10.1016/j.celrep.2015.04.031

    [10]

    Ramanjulu JM, Pesiridis GS, Yang JS, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity[J]. Nature, 2018, 564(7736): 439-443. doi: 10.1038/s41586-018-0705-y

    [11]

    Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5): 830-842. doi: 10.1016/j.immuni.2014.10.017

    [12]

    Lu L, Yang C, Zhou XY, et al. STING signaling promotes NK cell antitumor immunity and maintains a reservoir of TCF-1+ NK cells[J]. Cell Rep, 2023, 42(9): 113108. doi: 10.1016/j.celrep.2023.113108

    [13]

    Yan XW, Yao C, Fang C, et al. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer[J]. Int J Biol Sci, 2022, 18(2): 585-598. doi: 10.7150/ijbs.65019

    [14]

    Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472. doi: 10.1038/nature25432

    [15]

    Li J, Hubisz MJ, Earlie EM, et al. Non-cell-autonomous cancer progression from chromosomal instability[J]. Nature, 2023, 620(7976): 1080-1088. doi: 10.1038/s41586-023-06464-z

    [16]

    Chang JH, Guo JT. Treatment of chronic hepatitis B with pattern recognition receptor agonists: current status and potential for a cure[J]. Antiviral Res, 2015, 121: 152-159. doi: 10.1016/j.antiviral.2015.07.006

    [17]

    Cerón S, North BJ, Taylor SA, et al. The STING agonist 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus-induced neurological disease[J]. Virology, 2019, 529: 23-28. doi: 10.1016/j.virol.2019.01.006

    [18]

    Domizio JD, Gulen MF, Saidoune F, et al. The cGAS-STING pathway drives type Ⅰ IFN immunopathology in COVID-19[J]. Nature, 2022, 603(7899): 145-151. doi: 10.1038/s41586-022-04421-w

    [19]

    Xiao RX, Zhang A. Involvement of the STING signaling in COVID-19[J]. Front Immunol, 2022, 13: 1006395. doi: 10.3389/fimmu.2022.1006395

    [20]

    Liu NX, Pang XX, Zhang H, et al. The cGAS-STING pathway in bacterial infection and bacterial immunity[J]. Front Immunol, 2021, 12: 814709.

    [21]

    Zhu LF, Xu L, Wang CG, et al. T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese[J]. Proc Natl Acad Sci U S A, 2021, 118(42): e2103526118. doi: 10.1073/pnas.2103526118

    [22]

    Chen T, Feng YT, Sun WW, et al. The nucleotide receptor STING translocates to the phagosomes to negatively regulate anti-fungal immunity[J]. Immunity, 2023, 56(8): 1727-1742. e6.

    [23]

    Hansen AL, Mukai K, Schopfer FJ, et al. STING palmitoylation as a therapeutic target[J]. Cell Mol Immunol, 2019, 16(3): 236-241. doi: 10.1038/s41423-019-0205-5

    [24]

    Miner JJ, Fitzgerald KA. A path towards personalized medicine for autoinflammatory and related diseases[J]. Nat Rev Rheumatol, 2023, 19(3): 182-189. doi: 10.1038/s41584-022-00904-2

    [25]

    Gray EE, Treuting PM, Woodward JJ, et al. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of aicardi-goutières syndrome[J]. J Immunol, 2015, 195(5): 1939-1943. doi: 10.4049/jimmunol.1500969

    [26]

    Rodero MP, Tesser A, Bartok E, et al. Type Ⅰ interferon-mediated autoinflammation due to DNase Ⅱ deficiency[J]. Nat Commun, 2017, 8(1): 2176. doi: 10.1038/s41467-017-01932-3

    [27]

    Tansakul M, Thim-Uam A, Saethang T, et al. Deficiency of STING promotes collagen-specific antibody production and B cell survival in collagen-induced arthritis[J]. Front Immunol, 2020, 11: 1101. doi: 10.3389/fimmu.2020.01101

    [28]

    Mukai K, Ogawa E, Uematsu R, et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER[J]. Nat Commun, 2021, 12(1): 61. doi: 10.1038/s41467-020-20234-9

    [29]

    Kato Y, Park J, Takamatsu H, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type Ⅰ IFN production in systemic lupus erythematosus[J]. Ann Rheum Dis, 2018, 77(10): 1507-1515. doi: 10.1136/annrheumdis-2018-212988

    [30]

    Cheng FR, Su T, Liu Y, et al. Targeting lymph nodes for systemic immunosuppression using cell-free-DNA-scavenging and cGAS-inhibiting nanomedicine-In-hydrogel for rheumatoid arthritis immunotherapy[J]. Adv Sci, 2023, 10(26): e2302575. doi: 10.1002/advs.202302575

    [31]

    Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070. doi: 10.1038/ncb3586

    [32]

    Gulen MF, Samson N, Keller A, et al. cGAS-STING drives ageing-related inflammation and neurodegeneration[J]. Nature, 2023, 620(7973): 374-380. doi: 10.1038/s41586-023-06373-1

    [33]

    Yu QJ, Katlinskaya YV, Carbone CJ, et al. DNA-damage-induced type Ⅰ interferon promotes senescence and inhibits stem cell function[J]. Cell Rep, 2015, 11(5): 785-797. doi: 10.1016/j.celrep.2015.03.069

    [34]

    Taylor JM, Moore Z, Minter MR, et al. Type- Ⅰ interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease[J]. J Neural Transm, 2018, 125(5): 797-807. doi: 10.1007/s00702-017-1745-4

    [35]

    Jauhari A, Baranov SV, Suofu Y, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration[J]. J Clin Invest, 2021, 131(9): e150328. doi: 10.1172/JCI150328

    [36]

    Hinkle JT, Patel J, Panicker N, et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy[J]. Proc Natl Acad Sci U S A, 2022, 119(15): e2118819119. doi: 10.1073/pnas.2118819119

    [37]

    Zaki-Dizaji M, Akrami SM, Azizi G, et al. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis[J]? Inflamm Res, 2018, 67(7): 559-570. doi: 10.1007/s00011-018-1142-y

    [38]

    Ergun SL, Fernandez D, Weiss TM, et al. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition[J]. Cell, 2019, 178(2): 290-301. e10.

    [39]

    Zhou C, Chen X, Planells-Cases R, et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity[J]. Immunity, 2020, 52(5): 767-781. e6.

    [40]

    Zhao KX, Huang JJ, Zhao Y, et al. Targeting STING in cancer: challenges and emerging opportunities[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(6): 188983. doi: 10.1016/j.bbcan.2023.188983

    [41]

    Chin EN, Yu CG, Vartabedian VF, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic[J]. Science, 2020, 369(6506): 993-999. doi: 10.1126/science.abb4255

    [42]

    Pan BS, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity[J]. Science, 2020, 369(6506): eaba6098. doi: 10.1126/science.aba6098

    [43]

    Hall J, Brault A, Vincent F, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay[J]. PLoS One, 2017, 12(9): e0184843. doi: 10.1371/journal.pone.0184843

    [44]

    Padilla-Salinas R, Sun LJ, Anderson R, et al. Discovery of small-molecule cyclic GMP-AMP synthase inhibitors[J]. J Org Chem, 2020, 85(3): 1579-1600. doi: 10.1021/acs.joc.9b02666

    [45]

    Vincent J, Adura C, Gao P, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice[J]. Nat Commun, 2017, 8(1): 750. doi: 10.1038/s41467-017-00833-9

    [46]

    Lama L, Adura C, Xie W, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression[J]. Nat Commun, 2019, 10(1): 2261. doi: 10.1038/s41467-019-08620-4

    [47]

    Chu L, Li CH, Li YX, et al. Perillaldehyde inhibition of cGAS reduces dsDNA-induced interferon response[J]. Front Immunol, 2021, 12: 655637. doi: 10.3389/fimmu.2021.655637

    [48]

    An J, Woodward JJ, Sasaki T, et al. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction[J]. J Immunol, 2015, 194(9): 4089-4093. doi: 10.4049/jimmunol.1402793

    [49]

    Wang MD, Sooreshjani MA, Mikek C, et al. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels[J]. Future Med Chem, 2018, 10(11): 1301-1317. doi: 10.4155/fmc-2017-0322

    [50]

    Mukai K, Konno H, Akiba T, et al. Activation of STING requires palmitoylation at the Golgi[J]. Nat Commun, 2016, 7: 11932. doi: 10.1038/ncomms11932

    [51]

    Haag SM, Gulen MF, Reymond L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559(7713): 269-273. doi: 10.1038/s41586-018-0287-8

    [52]

    Hansen AL, Buchan GJ, Rühl M, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling[J]. Proc Natl Acad Sci U S A, 2018, 115(33): E7768-E7775.

    [53]

    Su CF, Cheng T, Huang J, et al. 4-Octyl itaconate restricts STING activation by blocking its palmitoylation[J]. Cell Rep, 2023, 42(9): 113040. doi: 10.1016/j.celrep.2023.113040

    [54]

    Humphries F, Shmuel-Galia L, Jiang ZZ, et al. Targeting STING oligomerization with small-molecule inhibitors[J]. Proc Natl Acad Sci U S A, 2023, 120(33): e2305420120. doi: 10.1073/pnas.2305420120

    [55]

    Barasa L, Chaudhuri S, Zhou JY, et al. Development of LB244, an irreversible STING antagonist[J]. J Am Chem Soc, 2023, 145(37): 20273-20288. doi: 10.1021/jacs.3c03637

    [56]

    Li SL, Hong Z, Wang Z, et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING[J]. Cell Rep, 2018, 25(12): 3405-3421. e7.

    [57]

    Siu T, Altman MD, Baltus GA, et al. Discovery of a novel cGAMP competitive ligand of the inactive form of STING[J]. ACS Med Chem Lett, 2019, 10(1): 92-97. doi: 10.1021/acsmedchemlett.8b00466

    [58]

    Hong Z, Mei JH, Li CH, et al. STING inhibitors target the cyclic dinucleotide binding pocket[J]. Proc Natl Acad Sci U S A, 2021, 118(24): e2105465118. doi: 10.1073/pnas.2105465118

    [59]

    Feng MX, Kong DP, Guo H, et al. Gelsevirine improves age-related and surgically induced osteoarthritis in mice by reducing STING availability and local inflammation[J]. Biochem Pharmacol, 2022, 198: 114975. doi: 10.1016/j.bcp.2022.114975

图(5)  /  表(4)
计量
  • 文章访问数:  964
  • HTML全文浏览量:  130
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-23
  • 网络出版日期:  2024-03-05
  • 刊出日期:  2024-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭