Research progress of cGAS-STING signaling pathway modulators in immunotherapy
-
摘要:
环鸟嘌呤-腺嘌呤核苷酸合成酶(cGAS)-干扰素基因刺激蛋白(STING)信号通路感知细胞质中的异常双链DNA后,诱导Ⅰ型干扰素(IFN- Ⅰ )和促炎细胞因子表达,从而激活宿主的免疫应答,增强机体抗肿瘤免疫反应和抗病原体感染。但是,cGAS-STING信号通路的持续激活会驱动自身免疫性疾病、衰老相关炎症和神经退行性病变等疾病。本文阐述了cGAS-STING信号通路参与调控多种免疫相关性疾病发生发展的机制,重点回顾了STING激动剂、cGAS抑制剂以及STING抑制剂的研发进展,为cGAS-STING调节剂的研发提供更多理论参考。
-
关键词:
- cGAS-STING信号通路 /
- STING激动剂 /
- cGAS抑制剂 /
- STING抑制剂 /
- 免疫治疗
Abstract:Upon monitoring cytoplasmic aberrant double-stranded DNA, cGAS-STING signaling pathway induces the expression of type I interferons and pro-inflammatory cytokines, which activates the host immune response and enhances anti-tumor immune response and resistance to pathogen infection. However, sustained activation of the cGAS-STING signaling pathway drives diseases such as autoimmune diseases, aging-associated inflammation, and neurodegenerative pathologies. Herein, we describe the mechanism by which cGAS-STING signaling pathway participates in regulating the development of various immune-related diseases, with a particular review of the research and development progress of STING agonists, cGAS inhibitors, and STING inhibitors, aiming to provide some theoretical reference for the future development of cGAS-STING modulators.
-
Keywords:
- cGAS-STING signaling pathway /
- STING agonist /
- cGAS inhibitor /
- STING inhibitor /
- immunotherapy
-
-
表 1 cGAS-STING信号通路参与调控多种免疫相关疾病的发生发展
疾病 疾病类型 与cGAS-STING信号通路的相关性 治疗方法 参考
文献肿瘤 抑癌 激活cGAS-STING信号通路,激发级联抗肿瘤免疫反应 cGAS/STING激动剂 [11] 促癌 cGAS-STING信号通路持续激活状态 cGAS/STING抑制剂 [14−15] 病原体感染 病毒 病毒的结构蛋白与STING相互作用,抑制STING通路的激活 cGAS/STING激动剂 [16−17] 细菌 抑制环状二核苷酸(CDNs)与STING蛋白结合 cGAS/STING激动剂 [21] 真菌 STING转位到吞噬体,抑制Src相关的Syk磷酸化,从而抑制抗真菌天然免疫信号通路 cGAS/STING抑制剂 [22] 自身免疫性疾病 STING相关血管病变 STING基因功能获得性突变 STING抑制剂 [23] Aicardi-Goutières综合征 核酸代谢紊乱有关的疾病 cGAS/STING抑制剂 [25] 胶原诱导性关节炎 dsDNA异常积累促进STING异常激活 cGAS/STING抑制剂 [27] COPA综合征 STING在高尔基体积累并自激活 STING抑制剂 [28] 系统性红斑狼疮 血清中cGAMP水平升高,促进cGAS-STING信号通路异常激活 cGAS/STING抑制剂 [29] 类风湿关节炎 cGAS-STING信号通路异常激活 cGAS/STING抑制剂 [30] 衰老 衰老 在cGAS缺陷或STING缺陷细胞/小鼠中观察到抗衰老保护作用 cGAS/STING抑制剂 [33] 神经退行性病变 阿尔茨海默病 I型干扰素加重神经炎症并促进阿尔茨海默病发展 cGAS/STING抑制剂 [34] 亨廷顿病 活性氧促进线粒体损伤,激活cGAS-STING信号通路 cGAS/STING抑制剂 [35] 帕金森病 cGAS-STING信号通路长期激活导致帕金森病的恶化 cGAS/STING抑制剂 [36] 共济失调-毛细血管扩张症 dsDNA激活cGAS-STING信号通路 cGAS/STING抑制剂 [37] 表 2 STING激动剂研发进展
分类 化合物名称 适应证 给药方式 试验阶段 临床编号/参考文献 CDNs类 ADU-S100 复发性或转移性头颈部鳞状细胞癌 瘤内注射 临床Ⅱ期(终止) NCT03937141 MK-1454 头颈部鳞状细胞癌 瘤内注射 临床Ⅱ期 NCT04220866 E7766 晚期实体瘤;淋巴瘤 瘤内注射 临床Ⅰ期 NCT04144140 TAK-676 成人晚期或转移性实体瘤 静脉注射 临床Ⅰ期 NCT04420884 SB11285 晚期或转移性实体瘤 静脉注射 临床Ⅰ期 NCT04096638 BI1387446 晚期实体瘤 瘤内注射 临床Ⅰ期 NCT04147234 IMSA101 晚期实体瘤 瘤内注射 临床Ⅰ/Ⅱ期 NCT04020185 BMS-986301 晚期实体瘤 静脉、瘤内、肌肉注射 临床Ⅰ期 NCT03956680 DN-015089 实体瘤 皮下、瘤内注射 临床Ⅰ期 CTR20212462 非CDNs类 diABZI 结肠癌 腹腔注射 临床前 [10] SR-717 黑色素瘤 腹腔注射 临床前 [41] MSA-2 结肠癌 瘤内、皮下注射;口服 临床前 [42] SNX281 晚期实体瘤 静脉注射 临床Ⅰ期 NCT04609579 HG381 晚期实体瘤 静脉注射 临床Ⅰ期 NCT04998422 ONO-7914 晚期或转移性实体癌 - 临床Ⅰ期 jRCT2031210530 KL340399 晚期实体瘤 瘤内注射 临床Ⅰ期 NCT05549804 表 3 cGAS抑制剂研发进展
化合物名称 功 能 种属特异性 体内或体外模型 体内或体外活性 参考文献 PF-06928215 抑制cGAS酶活 人源cGAS - - [43] CU-76 抑制cGAS酶活 人源cGAS THP-1细胞 抑制人源cGAS蛋白活性 [44] RU.521 抑制cGAS酶活 鼠源cGAS AGS小鼠模型 抑制I型干扰素的表达 [45] G150 抑制cGAS酶活 人源cGAS THP1细胞
RAW 264.7细胞抑制dsDNA诱导的cGAS活性 [46] PAH 抑制cGAS酶活 人/鼠源cGAS AGS小鼠模型 改善自身DNA诱导的自身炎症反应 [47] 奎纳克林、羟氯喹 抑制dsDNA/cGAS结合 人/鼠源cGAS Trex1−/−小鼠模型 对AGS/SLE小鼠的治疗有效 [48] Suramin 抑制dsDNA/cGAS结合 人源cGAS THP1细胞 抑制cGAS介导的I型干扰素反应 [49] VENT-03 抑制cGAS 人源cGAS Trex1−/−小鼠模型 抑制炎症,提高生存率 [8] 表 4 STING抑制剂研发进展
化合物名称 功 能 种属特异性 体内或体外模型 体内或体外活性 参考文献 C-178, C-176 抑制STING棕榈酰化 鼠源 Trex1−/−小鼠模型 改善全身炎症 [51] C-170, C-171 抑制STING棕榈酰化 人/鼠源 Trex1−/−小鼠模型 改善全身炎症 [51] H-151 抑制STING棕榈酰化 人/鼠源 Trex1−/−小鼠模型 改善全身炎症 [51] NO2-FAs 抑制STING棕榈酰化 人/鼠源 SAVI患者成纤维细胞 抑制IFN- Ⅰ的产生 [52] 4-OI 阻断STING的棕榈酰化和寡聚化 鼠源 BMDMs细胞
Raw264.7细胞
MEFs细胞抑制cGAS-STING信号通路 [53] BB-Cl-脒 共价修饰Cys148抑制STING寡聚 人/鼠源 BMDMs细胞
外周血单核细胞
AGS的Trex1D18N/D18N小鼠模型抑制小鼠和人类细胞中STING的激活,提高小鼠存活率 [54] LB244 共价修饰C292来抑制STING寡聚 人/鼠源 人单核细胞
BMDMs细胞阻断STING的共价修饰,抑制cGAS-STING信号通路 [55] Astin C 特异性结合STING的C端配体结合域 人/鼠源 Trex1−/−BMDMs细胞和Trex1−/−小鼠模型 抑制IFN- Ⅰ和促炎细胞因子的表达并减轻自身炎症反应 [56] Compound 18 占据STING二聚体的结合口袋 人/鼠源 THP1细胞 抑制cGAMP诱导的IFN-β的产生 [57] SN-011 与CDNs竞争STING内源性配体结合口袋 人/鼠源 Trex1−/−小鼠模型 改善自身免疫疾病 [58] -
[1] Mei JH, Hong Z, Wang C. Advances of drugs in targeting cGAS-STING signaling pathway[J]. J China Pharm Univ (中国药科大学学报), 2020, 51(3): 249-259. doi: 10.11665/j.issn.1000-5048.20200301 [2] O’Neill LAJ. DNA makes RNA makes innate immunity[J]. Cell, 2009, 138(3): 428-430. doi: 10.1016/j.cell.2009.07.021
[3] Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation[J]. Immunity, 2008, 29(4): 538-550. doi: 10.1016/j.immuni.2008.09.003
[4] Sun WX, Li Y, Chen L, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization[J]. Proc Natl Acad Sci USA, 2009, 106(21): 8653-8658.
[5] Jin L, Waterman PM, Jonscher KR, et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class Ⅱ and mediates transduction of apoptotic signals[J]. Mol Cell Biol, 2008, 28(16): 5014-5026. doi: 10.1128/MCB.00640-08
[6] Cheng ZL, Dai T, He XL, et al. The interactions between cGAS-STING pathway and pathogens[J]. Signal Transduct Target Ther, 2020, 5(1): 91. doi: 10.1038/s41392-020-0198-7
[7] Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+dendritic cells[J]. J Exp Med, 2011, 208(10): 2005-2016. doi: 10.1084/jem.20101159
[8] Mullard A. Biotechs step on cGAS for autoimmune diseases[J]. Nat Rev Drug Discov, 2023, 22(12): 939-941. doi: 10.1038/d41573-023-00185-8
[9] Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity[J]. Cell Rep, 2015, 11(7): 1018-1030. doi: 10.1016/j.celrep.2015.04.031
[10] Ramanjulu JM, Pesiridis GS, Yang JS, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity[J]. Nature, 2018, 564(7736): 439-443. doi: 10.1038/s41586-018-0705-y
[11] Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors[J]. Immunity, 2014, 41(5): 830-842. doi: 10.1016/j.immuni.2014.10.017
[12] Lu L, Yang C, Zhou XY, et al. STING signaling promotes NK cell antitumor immunity and maintains a reservoir of TCF-1+ NK cells[J]. Cell Rep, 2023, 42(9): 113108. doi: 10.1016/j.celrep.2023.113108
[13] Yan XW, Yao C, Fang C, et al. Rocaglamide promotes the infiltration and antitumor immunity of NK cells by activating cGAS-STING signaling in non-small cell lung cancer[J]. Int J Biol Sci, 2022, 18(2): 585-598. doi: 10.7150/ijbs.65019
[14] Bakhoum SF, Ngo B, Laughney AM, et al. Chromosomal instability drives metastasis through a cytosolic DNA response[J]. Nature, 2018, 553(7689): 467-472. doi: 10.1038/nature25432
[15] Li J, Hubisz MJ, Earlie EM, et al. Non-cell-autonomous cancer progression from chromosomal instability[J]. Nature, 2023, 620(7976): 1080-1088. doi: 10.1038/s41586-023-06464-z
[16] Chang JH, Guo JT. Treatment of chronic hepatitis B with pattern recognition receptor agonists: current status and potential for a cure[J]. Antiviral Res, 2015, 121: 152-159. doi: 10.1016/j.antiviral.2015.07.006
[17] Cerón S, North BJ, Taylor SA, et al. The STING agonist 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) stimulates an antiviral state and protects mice against herpes simplex virus-induced neurological disease[J]. Virology, 2019, 529: 23-28. doi: 10.1016/j.virol.2019.01.006
[18] Domizio JD, Gulen MF, Saidoune F, et al. The cGAS-STING pathway drives type Ⅰ IFN immunopathology in COVID-19[J]. Nature, 2022, 603(7899): 145-151. doi: 10.1038/s41586-022-04421-w
[19] Xiao RX, Zhang A. Involvement of the STING signaling in COVID-19[J]. Front Immunol, 2022, 13: 1006395. doi: 10.3389/fimmu.2022.1006395
[20] Liu NX, Pang XX, Zhang H, et al. The cGAS-STING pathway in bacterial infection and bacterial immunity[J]. Front Immunol, 2021, 12: 814709.
[21] Zhu LF, Xu L, Wang CG, et al. T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese[J]. Proc Natl Acad Sci U S A, 2021, 118(42): e2103526118. doi: 10.1073/pnas.2103526118
[22] Chen T, Feng YT, Sun WW, et al. The nucleotide receptor STING translocates to the phagosomes to negatively regulate anti-fungal immunity[J]. Immunity, 2023, 56(8): 1727-1742. e6.
[23] Hansen AL, Mukai K, Schopfer FJ, et al. STING palmitoylation as a therapeutic target[J]. Cell Mol Immunol, 2019, 16(3): 236-241. doi: 10.1038/s41423-019-0205-5
[24] Miner JJ, Fitzgerald KA. A path towards personalized medicine for autoinflammatory and related diseases[J]. Nat Rev Rheumatol, 2023, 19(3): 182-189. doi: 10.1038/s41584-022-00904-2
[25] Gray EE, Treuting PM, Woodward JJ, et al. Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of aicardi-goutières syndrome[J]. J Immunol, 2015, 195(5): 1939-1943. doi: 10.4049/jimmunol.1500969
[26] Rodero MP, Tesser A, Bartok E, et al. Type Ⅰ interferon-mediated autoinflammation due to DNase Ⅱ deficiency[J]. Nat Commun, 2017, 8(1): 2176. doi: 10.1038/s41467-017-01932-3
[27] Tansakul M, Thim-Uam A, Saethang T, et al. Deficiency of STING promotes collagen-specific antibody production and B cell survival in collagen-induced arthritis[J]. Front Immunol, 2020, 11: 1101. doi: 10.3389/fimmu.2020.01101
[28] Mukai K, Ogawa E, Uematsu R, et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER[J]. Nat Commun, 2021, 12(1): 61. doi: 10.1038/s41467-020-20234-9
[29] Kato Y, Park J, Takamatsu H, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type Ⅰ IFN production in systemic lupus erythematosus[J]. Ann Rheum Dis, 2018, 77(10): 1507-1515. doi: 10.1136/annrheumdis-2018-212988
[30] Cheng FR, Su T, Liu Y, et al. Targeting lymph nodes for systemic immunosuppression using cell-free-DNA-scavenging and cGAS-inhibiting nanomedicine-In-hydrogel for rheumatoid arthritis immunotherapy[J]. Adv Sci, 2023, 10(26): e2302575. doi: 10.1002/advs.202302575
[31] Glück S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence[J]. Nat Cell Biol, 2017, 19(9): 1061-1070. doi: 10.1038/ncb3586
[32] Gulen MF, Samson N, Keller A, et al. cGAS-STING drives ageing-related inflammation and neurodegeneration[J]. Nature, 2023, 620(7973): 374-380. doi: 10.1038/s41586-023-06373-1
[33] Yu QJ, Katlinskaya YV, Carbone CJ, et al. DNA-damage-induced type Ⅰ interferon promotes senescence and inhibits stem cell function[J]. Cell Rep, 2015, 11(5): 785-797. doi: 10.1016/j.celrep.2015.03.069
[34] Taylor JM, Moore Z, Minter MR, et al. Type- Ⅰ interferon pathway in neuroinflammation and neurodegeneration: focus on Alzheimer’s disease[J]. J Neural Transm, 2018, 125(5): 797-807. doi: 10.1007/s00702-017-1745-4
[35] Jauhari A, Baranov SV, Suofu Y, et al. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinflammatory signaling in accelerated aging and neurodegeneration[J]. J Clin Invest, 2021, 131(9): e150328. doi: 10.1172/JCI150328
[36] Hinkle JT, Patel J, Panicker N, et al. STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy[J]. Proc Natl Acad Sci U S A, 2022, 119(15): e2118819119. doi: 10.1073/pnas.2118819119
[37] Zaki-Dizaji M, Akrami SM, Azizi G, et al. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis[J]? Inflamm Res, 2018, 67(7): 559-570. doi: 10.1007/s00011-018-1142-y
[38] Ergun SL, Fernandez D, Weiss TM, et al. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition[J]. Cell, 2019, 178(2): 290-301. e10.
[39] Zhou C, Chen X, Planells-Cases R, et al. Transfer of cGAMP into bystander cells via LRRC8 volume-regulated anion channels augments STING-mediated interferon responses and anti-viral immunity[J]. Immunity, 2020, 52(5): 767-781. e6.
[40] Zhao KX, Huang JJ, Zhao Y, et al. Targeting STING in cancer: challenges and emerging opportunities[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(6): 188983. doi: 10.1016/j.bbcan.2023.188983
[41] Chin EN, Yu CG, Vartabedian VF, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic[J]. Science, 2020, 369(6506): 993-999. doi: 10.1126/science.abb4255
[42] Pan BS, Perera SA, Piesvaux JA, et al. An orally available non-nucleotide STING agonist with antitumor activity[J]. Science, 2020, 369(6506): eaba6098. doi: 10.1126/science.aba6098
[43] Hall J, Brault A, Vincent F, et al. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay[J]. PLoS One, 2017, 12(9): e0184843. doi: 10.1371/journal.pone.0184843
[44] Padilla-Salinas R, Sun LJ, Anderson R, et al. Discovery of small-molecule cyclic GMP-AMP synthase inhibitors[J]. J Org Chem, 2020, 85(3): 1579-1600. doi: 10.1021/acs.joc.9b02666
[45] Vincent J, Adura C, Gao P, et al. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice[J]. Nat Commun, 2017, 8(1): 750. doi: 10.1038/s41467-017-00833-9
[46] Lama L, Adura C, Xie W, et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression[J]. Nat Commun, 2019, 10(1): 2261. doi: 10.1038/s41467-019-08620-4
[47] Chu L, Li CH, Li YX, et al. Perillaldehyde inhibition of cGAS reduces dsDNA-induced interferon response[J]. Front Immunol, 2021, 12: 655637. doi: 10.3389/fimmu.2021.655637
[48] An J, Woodward JJ, Sasaki T, et al. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction[J]. J Immunol, 2015, 194(9): 4089-4093. doi: 10.4049/jimmunol.1402793
[49] Wang MD, Sooreshjani MA, Mikek C, et al. Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels[J]. Future Med Chem, 2018, 10(11): 1301-1317. doi: 10.4155/fmc-2017-0322
[50] Mukai K, Konno H, Akiba T, et al. Activation of STING requires palmitoylation at the Golgi[J]. Nat Commun, 2016, 7: 11932. doi: 10.1038/ncomms11932
[51] Haag SM, Gulen MF, Reymond L, et al. Targeting STING with covalent small-molecule inhibitors[J]. Nature, 2018, 559(7713): 269-273. doi: 10.1038/s41586-018-0287-8
[52] Hansen AL, Buchan GJ, Rühl M, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling[J]. Proc Natl Acad Sci U S A, 2018, 115(33): E7768-E7775.
[53] Su CF, Cheng T, Huang J, et al. 4-Octyl itaconate restricts STING activation by blocking its palmitoylation[J]. Cell Rep, 2023, 42(9): 113040. doi: 10.1016/j.celrep.2023.113040
[54] Humphries F, Shmuel-Galia L, Jiang ZZ, et al. Targeting STING oligomerization with small-molecule inhibitors[J]. Proc Natl Acad Sci U S A, 2023, 120(33): e2305420120. doi: 10.1073/pnas.2305420120
[55] Barasa L, Chaudhuri S, Zhou JY, et al. Development of LB244, an irreversible STING antagonist[J]. J Am Chem Soc, 2023, 145(37): 20273-20288. doi: 10.1021/jacs.3c03637
[56] Li SL, Hong Z, Wang Z, et al. The cyclopeptide astin C specifically inhibits the innate immune CDN sensor STING[J]. Cell Rep, 2018, 25(12): 3405-3421. e7.
[57] Siu T, Altman MD, Baltus GA, et al. Discovery of a novel cGAMP competitive ligand of the inactive form of STING[J]. ACS Med Chem Lett, 2019, 10(1): 92-97. doi: 10.1021/acsmedchemlett.8b00466
[58] Hong Z, Mei JH, Li CH, et al. STING inhibitors target the cyclic dinucleotide binding pocket[J]. Proc Natl Acad Sci U S A, 2021, 118(24): e2105465118. doi: 10.1073/pnas.2105465118
[59] Feng MX, Kong DP, Guo H, et al. Gelsevirine improves age-related and surgically induced osteoarthritis in mice by reducing STING availability and local inflammation[J]. Biochem Pharmacol, 2022, 198: 114975. doi: 10.1016/j.bcp.2022.114975