• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHANG Ran, TIAN Hong, GAO Xiangdong, YAO Wenbing. Application of next generation genome editing technology in gene therapy and biopharmaceuticals[J]. Journal of China Pharmaceutical University, 2014, 45(4): 504-510. DOI: 10.11665/j.issn.1000-5048.20140421
Citation: ZHANG Ran, TIAN Hong, GAO Xiangdong, YAO Wenbing. Application of next generation genome editing technology in gene therapy and biopharmaceuticals[J]. Journal of China Pharmaceutical University, 2014, 45(4): 504-510. DOI: 10.11665/j.issn.1000-5048.20140421

Application of next generation genome editing technology in gene therapy and biopharmaceuticals

More Information
  • In recent years, techeniqus as zinc-finger nucleases(ZFNs), transcription activator-like effector nucleases(TALENs)and clustered regulatory interspaced short palindromic repeats CRISPR/Cas-based RNA-guided DNA endonucleases(CRISPR/Cas)have been applied for genomics editing scale. According to their high efficiency and customizable possibility, such techeniques have a significant influence upon the following research aspects, gene therapy, cell model, protein glycoengineer technology, cell engineering technology, and ect. , which have also been promoting several novel strategies and study methods involved rapidly. This review summerizes the development of genome editing technology and its practical application inside the field of gene therapy and biophamarceutical industry.
  • [1]
    Mali P,Yang L,Esvelt KM,et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6 121):823-826.
    [2]
    Rusk N.Epigenetics:Modifying chromatin to shut off enhancers[J].Nat Methods,2013,10(11):1 052-1 053.
    [3]
    Cristea S,Freyvert Y,Santiago Y,et al.In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration[J].Biotechnol Bioeng,2013,110(3):871-880.
    [4]
    Maresca M,Lin VG,Guo N,et al.Obligate ligation-gated recombination(ObLiGaRe):custom-designed nuclease-mediated targeted integration through nonhomologous end joining[J].Genome Res,2013,23(3):539-546.
    [5]
    Cathomen T,Joung JK.Zinc-finger nucleases:the next generation emerges[J].Mol Ther,2008,16(7):1 200-1 207.
    [6]
    Mak ANS,Bradley P,Cernadas RA,et al.The crystal structure of TAL effector PthXo1 bound to its DNA target[J].Science,2012,335(6 069):716-719.
    [7]
    Deng D,Yan C,Pan X,et al.Structural basis for sequence-specific recognition of DNA by TAL effectors[J].Science,2012,335(6 069):720-723.
    [8]
    Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea[J].Nature,2012,482(7 385):331-338.
    [9]
    Jinek M,Chylinski K,Fonfara I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6 096):816-821.
    [10]
    Jiang W,Bikard D,Cox D,et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J].Nat Biotechnol,2013,31(3):233-239.
    [11]
    Cho SW,Kim S,Kim JM,et al.Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J].Nat Biotechnol,2013,31(3):230-232.
    [12]
    Sanjana NE,Cong L,Zhou Y,et al.A transcription activator-like effector toolbox for genome engineering[J].Nat Protoc,2012,7(1):171-192.
    [13]
    Howe SJ,Mansour MR,Schwarzwaelder K,et al.Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients[J].J Clin Invest,2008,118(9):3 143.
    [14]
    Sadelain M,Papapetrou EP,Bushman FD.Safe harbours for the integration of new DNA in the human genome[J].Nat Rev Cancer,2012,12(1):51-58.
    [15]
    Hockemeyer D,Soldner F,Beard C,et al.Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J].Nat Biotechnol,2009,27(9):851-857.
    [16]
    DeKelver RC,Choi VM,Moehle EA,et al.Functional genomics,proteomics,and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome[J].Genome Res,2010,20(8):1 133-1 142.
    [17]
    Hockemeyer D,Wang H,Kiani S,et al.Genetic engineering of human pluripotent cells using TALE nucleases[J].Nat Biotechnol,2011,29(8):731-734.
    [18]
    Perez EE,Wang J,Miller JC,et al.Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases[J].Nat Biotechnol,2008,26(7):808-816.
    [19]
    Holt N,Wang J,Kim K,et al.Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo[J].Nat Biotechnol,2010,28(8):839-847.
    [20]
    Gaj T,Guo J,Kato Y,et al.Targeted gene knockout by direct delivery of zinc-finger nuclease proteins[J].Nat Methods,2012,9(8):805-807.
    [21]
    Mussolino C,Morbitzer R,Lütge F,et al.A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity[J].Nucleic Acids Res,2011,39(21):9 283-9 293.
    [22]
    Miller JC,Tan S,Qiao G,et al.A TALE nuclease architecture for efficient genome editing[J].Nat Biotechnol,2011,29(2):143-148.
    [23]
    Voit RA,McMahon MA,Sawyer SL,et al.Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors[J].Mol Ther,2013,21(4):786-795.
    [24]
    Provasi E,Genovese P,Lombardo A,et al.Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer[J].Nat Methods,2012,18(5):807-815.
    [25]
    Urnov FD,Miller JC,Lee YL,et al.Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J].Nature,2005,435(7 042):646-651.
    [26]
    Li H,Haurigot V,Doyon Y,et al.In vivo genome editing restores haemostasis in a mouse model of haemophilia[J].Nature,2011,475(7 355):217-221.
    [27]
    Zou J,Mali P,Huang X,et al.Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease[J].Blood,2011,118(17):4 599-4 608.
    [28]
    Sebastiano V,Maeder ML,Angstman JF,et al.In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases[J].Stem Cells,2011,29(11):1 717-1 726.
    [29]
    An MC,Zhang N,Scott G,et al.Genetic correction of huntington′s disease phenotypes in induced pluripotent stem cells[J].Cell Stem Cell,2012,11(2):253-263.
    [30]
    Greenwald DL,Cashman SM,Kumar-Singh R.Engineered zinc finger nuclease-mediated homologous recombination of the human rhodopsin gene[J].Invest Ophthalmol Vis Sci,2010,51(12):6 374-6 380.
    [31]
    Soldner F,Laganière J,Cheng AW,et al.Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations[J].Cell,2011,146(2):318-331.
    [32]
    Osborn MJ,Starker CG,McElroy AN,et al.TALEN-based gene correction for epidermolysis bullosa[J].Mol Ther,2013,21(6):1 151-1 159.
    [33]
    Wu Y,Liang D,Wang Y,et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9[J].Cell stem cell,2013,13(6):659-662.
    [34]
    Ding Q,Lee YK,Schaefer EAK,et al.A TALEN genome-editing system for generating human stem cell-based disease models[J].Cell Stem Cell,2013,12(2):238-251.
    [35]
    Sliwkowski MX,Mellman I.Antibody therapeutics in cancer[J].Science,2013,341(6 151):1 192-1 198.
    [36]
    Stagg J,Loi S,Divisekera U,et al.Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy[J].Proc Natl Acad Sci U S A,2011,108(17):7 142-7 147.
    [37]
    Malphettes L,Freyvert Y,Chang J,et al.Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies[J].Biotechnol Bioeng,2010,106(5):774-783.
    [38]
    Yamane-Ohnuki N,Kinoshita S,Inoue-Urakubo M,et al.Establishment of FUT8 knockout Chinese hamster ovary cells:an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity[J].Biotechnol Bioeng,2004,87(5):614-622.
    [39]
    Sealover NR,Davis A,Brooks JK,et al.Engineering chinese hamster ovary(CHO)cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease(ZFN)-mediated geneknockout of mannosyl(alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase(Mgat1)[J].J Biotechnol,2013,167(1):24-32.
    [40]
    Liu PQ,Chan EM,Cost GJ,et al.Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases[J].Biotechnol Bioeng,2010,106(1):97-105.
    [41]
    Cost GJ,Freyvert Y,Vafiadis A,et al.BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells[J].Biotechnol Bioeng,2010,105(2):330-340.
    [42]
    Porteus MH.Mammalian gene targeting with designed zinc finger nucleases[J].Mol Ther,2006,13(2):438-446.
    [43]
    Pattanayak V,Ramirez CL,Joung JK,et al.Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection[J].Nat Methods,2011,8(9):765-770.
    [44]
    Fu Y,Foden JA,Khayter C,et al.High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J].Nat Biotechnol,2013,31(9):822-826.
    [45]
    Hsu PD,Scott DA,Weinstein JA,et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J].Nat Biotechnol,2013,31(9):827-832.
    [46]
    Miller JC,Holmes MC,Wang J,et al.An improved zinc-finger nuclease architecture for highly specific genome editing[J].Nat Biotechnol,2007,25(7):778-785.
    [47]
    Wang J,Friedman G,Doyon Y,et al.Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme[J].Genome Res,2012,22(7):1 316-1 326.
    [48]
    Ran F,Hsu PD,Lin CY,et al.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J].Cell,2013,154(6):1 380-1 389.
    [49]
    Fujii W, Onuma A, Sugiura K, et al. Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system[J].Biochem Biophys Res Commun,2014,445(4):791-794.
    [50]
    Cho SW,Kim S,Kim Y,et al.Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J].Genome Res,2014,24(1):132-141.
    [51]
    Fujii W,Kawasaki K,Sugiura K,et al.Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease[J].Nucleic Acids Res,2013,41(20):e187.
    [52]
    Ding Q,Regan SN,Xia Y,et al.Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs[J].Cell Stem Cell,2013,12(4):393-394.
    [53]
    Hockemeyer D,Soldner F,Beard C,et al.Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J].Nat Biotechnol,2009,27(9):851-857.
  • Related Articles

    [1]LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506
    [2]LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607
    [3]XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309
    [4]YU Shule, MA Lin, WU Zhengfeng, ZHAO Shouxun, WANG Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Non-C21 steroids from the Rhizome of Cynanchum stauntonii[J]. Journal of China Pharmaceutical University, 2015, 46(4): 426-430. DOI: 10.11665/j.issn.1000-5048.20150407
    [5]MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209
    [6]LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208
    [7]CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107
    [8]LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27.
    [9]SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222.
    [10]Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28.

Catalog

    Article views (1494) PDF downloads (2160) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return