Citation: | ZHANG Ran, TIAN Hong, GAO Xiangdong, YAO Wenbing. Application of next generation genome editing technology in gene therapy and biopharmaceuticals[J]. Journal of China Pharmaceutical University, 2014, 45(4): 504-510. DOI: 10.11665/j.issn.1000-5048.20140421 |
[1] |
Mali P,Yang L,Esvelt KM,et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6 121):823-826.
|
[2] |
Rusk N.Epigenetics:Modifying chromatin to shut off enhancers[J].Nat Methods,2013,10(11):1 052-1 053.
|
[3] |
Cristea S,Freyvert Y,Santiago Y,et al.In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration[J].Biotechnol Bioeng,2013,110(3):871-880.
|
[4] |
Maresca M,Lin VG,Guo N,et al.Obligate ligation-gated recombination(ObLiGaRe):custom-designed nuclease-mediated targeted integration through nonhomologous end joining[J].Genome Res,2013,23(3):539-546.
|
[5] |
Cathomen T,Joung JK.Zinc-finger nucleases:the next generation emerges[J].Mol Ther,2008,16(7):1 200-1 207.
|
[6] |
Mak ANS,Bradley P,Cernadas RA,et al.The crystal structure of TAL effector PthXo1 bound to its DNA target[J].Science,2012,335(6 069):716-719.
|
[7] |
Deng D,Yan C,Pan X,et al.Structural basis for sequence-specific recognition of DNA by TAL effectors[J].Science,2012,335(6 069):720-723.
|
[8] |
Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea[J].Nature,2012,482(7 385):331-338.
|
[9] |
Jinek M,Chylinski K,Fonfara I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6 096):816-821.
|
[10] |
Jiang W,Bikard D,Cox D,et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J].Nat Biotechnol,2013,31(3):233-239.
|
[11] |
Cho SW,Kim S,Kim JM,et al.Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J].Nat Biotechnol,2013,31(3):230-232.
|
[12] |
Sanjana NE,Cong L,Zhou Y,et al.A transcription activator-like effector toolbox for genome engineering[J].Nat Protoc,2012,7(1):171-192.
|
[13] |
Howe SJ,Mansour MR,Schwarzwaelder K,et al.Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients[J].J Clin Invest,2008,118(9):3 143.
|
[14] |
Sadelain M,Papapetrou EP,Bushman FD.Safe harbours for the integration of new DNA in the human genome[J].Nat Rev Cancer,2012,12(1):51-58.
|
[15] |
Hockemeyer D,Soldner F,Beard C,et al.Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J].Nat Biotechnol,2009,27(9):851-857.
|
[16] |
DeKelver RC,Choi VM,Moehle EA,et al.Functional genomics,proteomics,and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome[J].Genome Res,2010,20(8):1 133-1 142.
|
[17] |
Hockemeyer D,Wang H,Kiani S,et al.Genetic engineering of human pluripotent cells using TALE nucleases[J].Nat Biotechnol,2011,29(8):731-734.
|
[18] |
Perez EE,Wang J,Miller JC,et al.Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases[J].Nat Biotechnol,2008,26(7):808-816.
|
[19] |
Holt N,Wang J,Kim K,et al.Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo[J].Nat Biotechnol,2010,28(8):839-847.
|
[20] |
Gaj T,Guo J,Kato Y,et al.Targeted gene knockout by direct delivery of zinc-finger nuclease proteins[J].Nat Methods,2012,9(8):805-807.
|
[21] |
Mussolino C,Morbitzer R,Lütge F,et al.A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity[J].Nucleic Acids Res,2011,39(21):9 283-9 293.
|
[22] |
Miller JC,Tan S,Qiao G,et al.A TALE nuclease architecture for efficient genome editing[J].Nat Biotechnol,2011,29(2):143-148.
|
[23] |
Voit RA,McMahon MA,Sawyer SL,et al.Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors[J].Mol Ther,2013,21(4):786-795.
|
[24] |
Provasi E,Genovese P,Lombardo A,et al.Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer[J].Nat Methods,2012,18(5):807-815.
|
[25] |
Urnov FD,Miller JC,Lee YL,et al.Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J].Nature,2005,435(7 042):646-651.
|
[26] |
Li H,Haurigot V,Doyon Y,et al.In vivo genome editing restores haemostasis in a mouse model of haemophilia[J].Nature,2011,475(7 355):217-221.
|
[27] |
Zou J,Mali P,Huang X,et al.Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease[J].Blood,2011,118(17):4 599-4 608.
|
[28] |
Sebastiano V,Maeder ML,Angstman JF,et al.In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases[J].Stem Cells,2011,29(11):1 717-1 726.
|
[29] |
An MC,Zhang N,Scott G,et al.Genetic correction of huntington′s disease phenotypes in induced pluripotent stem cells[J].Cell Stem Cell,2012,11(2):253-263.
|
[30] |
Greenwald DL,Cashman SM,Kumar-Singh R.Engineered zinc finger nuclease-mediated homologous recombination of the human rhodopsin gene[J].Invest Ophthalmol Vis Sci,2010,51(12):6 374-6 380.
|
[31] |
Soldner F,Laganière J,Cheng AW,et al.Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations[J].Cell,2011,146(2):318-331.
|
[32] |
Osborn MJ,Starker CG,McElroy AN,et al.TALEN-based gene correction for epidermolysis bullosa[J].Mol Ther,2013,21(6):1 151-1 159.
|
[33] |
Wu Y,Liang D,Wang Y,et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9[J].Cell stem cell,2013,13(6):659-662.
|
[34] |
Ding Q,Lee YK,Schaefer EAK,et al.A TALEN genome-editing system for generating human stem cell-based disease models[J].Cell Stem Cell,2013,12(2):238-251.
|
[35] |
Sliwkowski MX,Mellman I.Antibody therapeutics in cancer[J].Science,2013,341(6 151):1 192-1 198.
|
[36] |
Stagg J,Loi S,Divisekera U,et al.Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy[J].Proc Natl Acad Sci U S A,2011,108(17):7 142-7 147.
|
[37] |
Malphettes L,Freyvert Y,Chang J,et al.Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies[J].Biotechnol Bioeng,2010,106(5):774-783.
|
[38] |
Yamane-Ohnuki N,Kinoshita S,Inoue-Urakubo M,et al.Establishment of FUT8 knockout Chinese hamster ovary cells:an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity[J].Biotechnol Bioeng,2004,87(5):614-622.
|
[39] |
Sealover NR,Davis A,Brooks JK,et al.Engineering chinese hamster ovary(CHO)cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease(ZFN)-mediated geneknockout of mannosyl(alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase(Mgat1)[J].J Biotechnol,2013,167(1):24-32.
|
[40] |
Liu PQ,Chan EM,Cost GJ,et al.Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases[J].Biotechnol Bioeng,2010,106(1):97-105.
|
[41] |
Cost GJ,Freyvert Y,Vafiadis A,et al.BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells[J].Biotechnol Bioeng,2010,105(2):330-340.
|
[42] |
Porteus MH.Mammalian gene targeting with designed zinc finger nucleases[J].Mol Ther,2006,13(2):438-446.
|
[43] |
Pattanayak V,Ramirez CL,Joung JK,et al.Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection[J].Nat Methods,2011,8(9):765-770.
|
[44] |
Fu Y,Foden JA,Khayter C,et al.High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J].Nat Biotechnol,2013,31(9):822-826.
|
[45] |
Hsu PD,Scott DA,Weinstein JA,et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J].Nat Biotechnol,2013,31(9):827-832.
|
[46] |
Miller JC,Holmes MC,Wang J,et al.An improved zinc-finger nuclease architecture for highly specific genome editing[J].Nat Biotechnol,2007,25(7):778-785.
|
[47] |
Wang J,Friedman G,Doyon Y,et al.Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme[J].Genome Res,2012,22(7):1 316-1 326.
|
[48] |
Ran F,Hsu PD,Lin CY,et al.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J].Cell,2013,154(6):1 380-1 389.
|
[49] |
Fujii W, Onuma A, Sugiura K, et al. Efficient generation of genome-modified mice via offset-nicking by CRISPR/Cas system[J].Biochem Biophys Res Commun,2014,445(4):791-794.
|
[50] |
Cho SW,Kim S,Kim Y,et al.Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J].Genome Res,2014,24(1):132-141.
|
[51] |
Fujii W,Kawasaki K,Sugiura K,et al.Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease[J].Nucleic Acids Res,2013,41(20):e187.
|
[52] |
Ding Q,Regan SN,Xia Y,et al.Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs[J].Cell Stem Cell,2013,12(4):393-394.
|
[53] |
Hockemeyer D,Soldner F,Beard C,et al.Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J].Nat Biotechnol,2009,27(9):851-857.
|
[1] | LI Linzhen, WEI Xi, LIU Lu, LI Yongjun, LIANG Jingyu. Chemical constituents from the stems of Clerodendrum trichotomum Thunb.[J]. Journal of China Pharmaceutical University, 2019, 50(5): 544-548. DOI: 10.11665/j.issn.1000-5048.20190506 |
[2] | LIN Qinghua, XU Jian, FENG Feng. Chemical constituents from the stems of Picrasma quassioides Bennet[J]. Journal of China Pharmaceutical University, 2017, 48(6): 675-679. DOI: 10.11665/j.issn.1000-5048.20170607 |
[3] | XU Yunhui, JIANG Xueyang, XU Jian, JIANG Renwang, ZHANG Jie, XIE Zijian, FENG Feng. Chemical constituents from Callicarpa kwangtungensis Chun[J]. Journal of China Pharmaceutical University, 2016, 47(3): 299-302. DOI: 10.11665/j.issn.1000-5048.20160309 |
[4] | YU Shule, MA Lin, WU Zhengfeng, ZHAO Shouxun, WANG Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Non-C21 steroids from the Rhizome of Cynanchum stauntonii[J]. Journal of China Pharmaceutical University, 2015, 46(4): 426-430. DOI: 10.11665/j.issn.1000-5048.20150407 |
[5] | MA Lin, ZHANG Rongfei, YU Shule, WU Zhengfeng, ZHAO Shouxun, Wang Lei, YE Wencai, ZHANG Jian, YIN Zhiqi. Chemical constituents of Fructus Gleditsiae Abnormalis[J]. Journal of China Pharmaceutical University, 2015, 46(2): 188-193. DOI: 10.11665/j.issn.1000-5048.20150209 |
[6] | LI Linzhen, WANG Menghua, SUN Jianbo, LIANG Jingyu. Chemical constituents from Aletris spicata[J]. Journal of China Pharmaceutical University, 2014, 45(2): 175-177. DOI: 10.11665/j.issn.1000-5048.20140208 |
[7] | CHANG Bo, XIAO Linjing, ZHANG Jian, ZHAO Shouxun, YE Wencai, YIN Zhiqi. Chemical constituents from Abies ernestii var.salouenensis[J]. Journal of China Pharmaceutical University, 2014, 45(1): 43-47. DOI: 10.11665/j.issn.1000-5048.20140107 |
[8] | LI Jiu-hui, CHEN Guang-ying, HAN Chang-ri, MO Zheng-rong, SONG Xiao-ping. Chemical constituents from the stems of Vatica mangachpoi Blanco[J]. Journal of China Pharmaceutical University, 2012, 43(1): 25-27. |
[9] | SUN Jing, YIN Zhi-qi, ZHANG Qing-wen, YE Wen-cai, WANG Yi-ta, ZHAO Shou-xun. Chemical constituents from ethyl acetate extract of Ganoderma lucidum[J]. Journal of China Pharmaceutical University, 2011, 42(3): 220-222. |
[10] | Chemical constituents from Senecio nemorensis.[J]. Journal of China Pharmaceutical University, 2010, 41(1): 26-28. |