• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHANG Chenyu, LI Xue, QIAN Hai, HUANG Wenlong. Self-assembled peptide:insights and biomedicine applications[J]. Journal of China Pharmaceutical University, 2015, 46(2): 250-256. DOI: 10.11665/j.issn.1000-5048.20150219
Citation: ZHANG Chenyu, LI Xue, QIAN Hai, HUANG Wenlong. Self-assembled peptide:insights and biomedicine applications[J]. Journal of China Pharmaceutical University, 2015, 46(2): 250-256. DOI: 10.11665/j.issn.1000-5048.20150219

Self-assembled peptide:insights and biomedicine applications

More Information
  • Self-assembled peptides occur via inter-molecular non-covalent assembly, spontaneity or triggering, and the formed nanostructures have been found to have certain features and functions which are not shown by the original peptide molecules or low-hierarchical molecules. There are growing attentions on the self-assembled peptide. This review provides detailed classifications of self-assembled peptides, i. e. , spontaneity and triggering, according to how the self-assemble responds or adjusts to outer environment. In addition, the summary offers potentials of their applications in biomedicine, such as anti-tumor and anti-bacterial medicine, drug carriers modifying pharmaceutical features of drugs, enhanced drug targeting, matrix as cell culture, tissue regeneration, and biomedicinal detection.
  • [1]
    Petkau-Milroy K,Brunsveld L.Supramolecular chemical biology:bioactive synthetic self-assemblies[J].Org Biomol Chem,2013,11(2):219-232.
    [2]
    Fichman G, Gazit E. Self-assembly of short peptides to form hydrogels:design of building blocks,physical properties and technological applications[J].Acta Biomater,2014,10(4):1671-1682.
    [3]
    Hamley IW.Self-assembly of amphiphilicpeptides[J].Soft Matter,2011,7(9):4122-4138.
    [4]
    Cavalli S, Handgraaf JW, Tellers EE, et al.Two-dimensional ordered β-sheet lipopeptide monolayers[J].J Am Chem Soc,2006,128(42):13959-13966.
    [5]
    Wang H,Ren C,Song Z,et al.Enzyme-triggered self-assembly of a small molecule:a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration[J].Nanotechnology,2010,21(22):225606.
    [6]
    Ou C,Wang H,Yang Z,et al.Precursor-involved and conversion rate-controlled self-assembly of a ‘supergelator’ in thixotropic hydrogels for drug delivery[J].Chinese J Chem,2012,30(8):1781-1787.
    [7]
    Li X,Gao Y,Kuang Y,et al.Enzymatic formation of a photoresponsive supramolecular hydrogel[J].Chem Commun,2010,46(29):5364-5366.
    [8]
    Parrott MC, Luft JC, Byrne JD, et al. Tunable bifunctionalsilyl ether cross-linkers for the design of acid-sensitive biomaterials[J].J Am Chem Soc,2010,132(50):17928-17932.
    [9]
    Kang YJ,Zhou XR,Luo SZ.Synthesis and characterization of a pH-responsive amphiphilic peptide hydrogel composed of pal-RLRRLRARARA[J].China Sci Paper(中国科技论文),2012,6(7):437-441.
    [10]
    Chen CS,Xu XD,Li SY,et al.Photo-switched self-assembly of a gemini α-helical peptide into supramolecular architectures[J].Nanoscale,2013,5(14):6270-6274.
    [11]
    Rughani RV,Branco MC,Pochan DJ,et al.De novo design of a shear-thin recoverable peptide-based hydrogel capable of intrafibrillar photopolymerization[J].Macromolecules,2010,43(19):7924-7930.
    [12]
    Gao Y,Yang Z,Kuang Y,et al.Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels[J].Biopolymers,2010,94(1):19-31.
    [13]
    Dehsorkhi A,Hamley I W,Seitsonen J,et al.Tuning self-assembled nanostructures through enzymatic degradation of a peptide amphiphile[J].Langmuir,2013,29(22):6665-6672.
    [14]
    Hirst AR, Roy S, Arora M, et al. Biocatalytic induction of supramolecularorder[J].Nat Chem,2010,2(12):1089-1094.
    [15]
    Yang Z,Liang G,Wang L,et al.Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramolecular hydrogel in vivo[J].J Am Chem Soc,2006,128(9):3038-3043.
    [16]
    Williams RJ,Mart RJ,Ulijn RV.Exploiting biocatalysis in peptide self-assembly[J].Pep Sci,2010,94(1):107-117.
    [17]
    Tsitsilianis C.Responsive reversible hydrogels from associative “smart” macromolecules[J].Soft Matter,2010,6(11):2372-2388.
    [18]
    Yang ZM,Xu KM,Guo ZF,et al.Intracellular enzymatic formation of nanofibers results in hydrogelation and regulated cell death[J].Adv Mater,2007,19(20):3152-3156.
    [19]
    Chen L,Patrone N,Liang JF.Peptide self-assembly on cell membranes to induce cell lysis[J].Biomacromolecules,2012,13(10):3327-3333.
    [20]
    Chen C, Pan F, Zhang S, et al. Antibacterial activities of short designer peptides:a link between propensity for nanostructuring and capacity for membrane destabilization[J].Biomacromolecules,2010,11(2):402-411.
    [21]
    Debnath S, Shome A, Das D, et al. Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles:potent antibacterial agent[J].J Phys Chem B,2010,114(13):4407-4415.
    [22]
    Shankar SS,Benke SN,Nagendra N,et al.Self-assembly to function:design,synthesis,and broad spectrum antimicrobial properties of short hybrid E-vinylogous lipopeptides[J].J Med Chem,2013,56(21):8468-8474.
    [23]
    Montenegro J,Ghadiri MR,Granja JR.Ion channel models based on self-assembling cyclic peptide nanotubes[J].Accounts Chem Res,2013,46(12):2955-2965.
    [24]
    Yang Z,Liang G,Guo Z,et al.Intracellular hydrogelation of small molecules inhibits bacterial growth[J].Angew Chem Int Edit,2007,46(43):8216-8219.
    [25]
    Chairatana P,Nolan EM.Molecular basis for self-assembly of a human host-defense peptide that entraps bacterial pathogens[J].J Am Chem Soc,2014,136(38):13267-13276.
    [26]
    Liu L,Xu K,Wang H,et al.Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent[J].Nat Nanotech-nol,2009,4(7):457-463.
    [27]
    Salick DA,Pochan DJ,Schneider JP.Design of an injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus[J].Adv Mater,2009,21(41):4120-4123.
    [28]
    Liu Y,Yang Y,Wang C,et al.Stimuli-responsive self-assembling peptides made from antibacterial peptides[J].Nanoscale,2013,5(14):6413-6421.
    [29]
    Xu H,Wang J,Han S,et al.Hydrophobic-region-induced transitions in self-assembled peptide nanostructures[J].Langmuir,2009,25(7):4115-4123.
    [30]
    Makovitzki A,Baram J,Shai Y.Antimicrobial lipopolypeptides composed of palmitoyl Di-and tricationic peptides: in vitro and in vivo activities,self-assembly to nanostructures,and a plausible mode of action[J]?Biochemistry-us,2008,47(40):10630-10636.
    [31]
    Chen L,Liang JF.Peptide fibrils with altered stability,activity,and cell selectivity[J].Biomacromolecules,2013,14(7):2326-2331.
    [32]
    Naidoo VB,Rautenbach M.Self-assembling organo-peptide bolaphiles with KLK tripeptide head groups display selective antibacterial activity[J].J Pept Sci,2013,19(12):784-791.
    [33]
    Collier JH, Rudra JS, Gasiorowski JZ, et al. Multi-component extracellular matrices based on peptide self-assembly[J].ChemSoc Rev,2010,39(9):3413-3424.
    [34]
    Branco MC,Pochan DJ,Wagner NJ,et al.The effect of protein structure on their controlled release from an injectable peptide hydrogel[J].Biomaterials,2010,31(36):9527-9534.
    [35]
    van Hell AJ,Crommelin DJA,Hennink WE,et al.Stabilization of peptide vesicles by introducing inter-peptide disulfide bonds[J].Pharm Res,2009,26(9):2186-2193.
    [36]
    Hua D, Kong W, Zheng X, et al. Potent tumor targeting drug release system comprising MMP-2 specific peptide fragment with self-assembling characteristics[J].Drug Des Dev Ther,2014,8:1839.
    [37]
    Li Y,Zheng X,Cao Z,et al.Self-assembled peptide(CADY-1)improved the clinical application of doxorubicin[J].Int J Pharm,2012,434(1):209-214.
    [38]
    Xu XD,Chen CS,Lu B,et al.Coassembly of oppositely charged short peptides into well-defined supramolecular hydrogels[J].J Phys Chem B,2010,114(7):2365-2372.
    [39]
    Xu XD,Liang L,Chen CS,et al.Peptide hydrogel as an intraocular drug delivery system for inhibition of postoperative scarring formation[J].ACS Appl Mater Inter,2010,2(9):2663-2671.
    [40]
    Wiradharma N,Tong YW,Yang YY.Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect[J].Biomaterials,2009,30(17):3100-3109.
    [41]
    Tang C,Miller AF,Saiani A.Peptide hydrogels as mucoadhesives for local drug delivery[J].Int J Pharm,2014,465(1):427-435.
    [42]
    Kim JK, Anderson J, Jun HW,et al.Self-assembling peptide amphiphile-based nanofiber gel for bioresponsive cisplatin delivery[J].Mol Pharm,2009,6(3):978-985.
    [43]
    Liang J, Wu WL, Xu XD, et al. pH responsive micelle self-assembled from a new amphiphilic peptide as anti-tumor drug carrier[J].Colloids Surf B Biointerfaces,2014,114:398-403.
    [44]
    Liu J,Zhang L,Yang Z,et al.Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro[J].Int J Nanomed,2011,6:2143-2153.
    [45]
    Briuglia ML,Urquhart AJ,Lamprou DA.Sustained and controlled release of lipophilic drugs from a self-assembling amphiphilic peptide hydrogel[J].Int J Pharm,2014,474(1):103-111.
    [46]
    Chen Y,Song S,Yan Z,et al.Self-assembled rosette nanotubes encapsulate and slowly release dexamethasone[J].Int J Nanomed,2011,6:1035.
    [47]
    Moitra P,Kumar K,Kondaiah P,et al.Efficacious anticancer drug delivery mediated by a pH-sensitive self-assembly of a conserved tripeptide derived from tyrosine kinase NGF receptor[J].Angew ChemInt Edit,2014,53(4):1113-1117.
    [48]
    Roy R,Deb J,Jana SS,et al.Peptide conjugates of a nonsteroidal anti-inflammatory drug as supramolecular gelators:synthesis,characterization,and biological studies[J].Chem Asian J,2014,9(11):3196-3206.
    [49]
    Huang R,Qi W,Feng L,et al.Self-assembling peptide-polysaccharide hybrid hydrogel as a potential carrier for drug delivery[J].Soft Matter,2011,7(13):6222-6230.
    [50]
    Huang H,Ding Y,Sun XS,et al.Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells[J].PloS One,2013,8(3):e59482.
    [51]
    Kyle S,Aggeli A,Ingham E,et al.Production of self-assembling biomaterials for tissue engineering[J].Trends Biotechnol,2009,27(7):423-433.
    [52]
    Galler KM,Aulisa L,Regan KR,et al.Self-assembling multidomain peptide hydrogels:designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading[J].J Am Chem Soc,2010,132(9):3217-3223.
    [53]
    Gelain F,Unsworth LD,Zhang S.Slow and sustained release of active cytokines from self-assembling peptide scaffolds[J].J Control Release,2010,145(3):231-239.
    [54]
    Bakota EL,Aulisa L,Galler KM,et al.Enzymatic cross-linking of a nanofibrous peptide hydrogel[J].Biomacromolecules,2010,12(1):82-87.
    [55]
    Nune M, Kumaraswamy P, Maheswari Krishnan U, et al.Self-assembling peptide nanofibrous scaffolds for tissue engineering:novel approaches and strategies for effective functional regeneration[J].Curr Protein Pept Sci,2013,14(1):70-84.
    [56]
    Arosio P,Owczarz M,Wu H,et al.End-to-end self-assembly of RADA 16-I nanofibrils in aqueous solutions[J].Biophys J,2012,102(7):1617-1626.
    [57]
    Matson JB,Stupp SI.Self-assembling peptide scaffolds for regenerative medicine[J].Chem Commun,2012,48(1):26-33.
    [58]
    Chen C, Gu Y, Deng L, et al.Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions[J].ACS Appl Mater Interfaces,2014,6(16):14360-14368.
    [59]
    Yang Z, Ho PL, Liang G, et al. Using β-lactamase to trigger supramolecular hydrogelation[J].J Am Chem Soc,2007,129(2):266-267.
  • Related Articles

    [1]ZHANG Yuting, WANG Anhui, YANG Jinni, LIN Jiachun, TIAN Yuan, DONG Haijuan, ZHANG Zunjian, SONG Rui. Mechanisms of cholesterol metabolism imbalance in a PA-induced non-alcoholic fatty liver disease cell model[J]. Journal of China Pharmaceutical University, 2023, 54(4): 490-500. DOI: 10.11665/j.issn.1000-5048.2023032401
    [2]CHEN Xin, YANG Qian, YOU Qidong, GUO Xiaoke. Advances of inhibitors targeting MLL1-WDR5 protein-protein interaction[J]. Journal of China Pharmaceutical University, 2022, 53(2): 125-136. DOI: 10.11665/j.issn.1000-5048.20220201
    [3]YANG Qian, WANG Xiaojian. Research progress of sphingosine kinase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2021, 52(6): 759-768. DOI: 10.11665/j.issn.1000-5048.20210615
    [4]TIAN Jiping, ZHANG Jian, ZHOU Jinpei, ZHANG Huibin. Advances in small molecule inhibitors of PD-1/PD-L1 immune checkpoint pathway[J]. Journal of China Pharmaceutical University, 2019, 50(1): 1-10. DOI: 10.11665/j.issn.1000-5048.20190101
    [5]LU Lu, GUO Qinglong, ZHAO Li. Advances of Src kinase family and paclitaxel resistance[J]. Journal of China Pharmaceutical University, 2017, 48(4): 377-383. DOI: 10.11665/j.issn.1000-5048.20170401
    [6]CHENG Yulan, MEN Jinxia, ZHOU Jinpei, ZHANG Huibin. Advances in indoleamine 2, 3-dioxygenase 1 inhibitors[J]. Journal of China Pharmaceutical University, 2017, 48(3): 361-370. DOI: 10.11665/j.issn.1000-5048.20170318
    [7]YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417
    [8]YAO Aihong, CHANG Yujie, JIANG Cheng, SUN Haiying. Research progress of Polo-like kinase 1 inhibitors targeting Polo-box domain[J]. Journal of China Pharmaceutical University, 2016, 47(1): 1-8. DOI: 10.11665/j.issn.1000-5048.20160101
    [9]YIN Lei, WANG Ying, CHEN Song, GAO Xiangdong. Advances of glucagon-like peptide-1 receptor agonists in the treatment of nervous system diseases[J]. Journal of China Pharmaceutical University, 2014, 45(4): 383-391. DOI: 10.11665/j.issn.1000-5048.20140401
    [10]KONG Kai-lai, LU Shuai, GAO Yi-ping, YANG Pei, TANG Wei-fang, LU Tao. Advances on the study of PLK1 inhibitors as antitumor agents[J]. Journal of China Pharmaceutical University, 2011, 42(1): 9-15.

Catalog

    Article views (1496) PDF downloads (5335) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return