• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
HAO Tianyun, GAO Yuan, WEI Yuanfeng, ZHANG Jianjun, QIAN Shuai. Strategies in transdermal and mucosal drug delivery systems:role of lyotropic liquid crystal[J]. Journal of China Pharmaceutical University, 2018, 49(2): 173-180. DOI: 10.11665/j.issn.1000-5048.20180206
Citation: HAO Tianyun, GAO Yuan, WEI Yuanfeng, ZHANG Jianjun, QIAN Shuai. Strategies in transdermal and mucosal drug delivery systems:role of lyotropic liquid crystal[J]. Journal of China Pharmaceutical University, 2018, 49(2): 173-180. DOI: 10.11665/j.issn.1000-5048.20180206

Strategies in transdermal and mucosal drug delivery systems:role of lyotropic liquid crystal

More Information
  • Lyotropic liquid crystal system is formed by the amphiphilic molecules dissolving in polar solvents with a special geometric structure. Lamellar, cubic and hexagonal mesophases are some of the most common lyotropic liquid crystal systems. Recently, they have attracted much research attention because of their distinctive structures and physico-chemical properties(like strong bioadhesion, high permeability, low liquidity, and slow released drug), and have been widely used as carriers for drug delivery systems, especially in transdermal and mucosal fields. According to the research about lyotropic liquid crystal and nasal route of administration in our group, and the related references in recent years, we investigate the technical strategies about the using of lyotropic liquid crystal in transdermal and mucosal drug delivery system. Among them, we specially put the emphasis on the application prospects of lyotropic liquid crystal in the nasal mucosal administration, and then provide a theoretical basis and future research directions in the development of lyotropic liquid crystal in transdermal and mucosal administration fields.
  • [1]
    Figueiredo KA,Medeiros SC,Neves JK,et al.In vivo evaluation of anticonvulsant and antioxidant effects of phenobarbital microemulsion for transdermal administration in pilocarpine seizure rat model[J].Pharmacol Biochem Behav,2015,131:6-12.
    [2]
    Tran N,Mulet X,Hawley AM,et al.Nanostructure and cytotoxicity of self-assembled monoolein-capric acid lyotropic liquid crystalline nanoparticles[J].RSC Adv,2015,5(34):26785-26795.
    [3]
    Song A,Zhang X,Li Y,et al.Effect of liquid to solid lipid ratio on characterizations of flurbiprofen-loaded solid lipid nanoparticles(SLN)and nanostructured lipid carriers(NLC)for transdermal administration[J].Drug Dev Ind Pharm,2016,42(8):1308-1314.
    [4]
    Malviya N,Somisetty K,Vemula K.Design and development of a novel transmucosal patch embedded with diclofenac diethylamine loaded solid lipid nanoparticles[J].J Young Pharmacists,2014,7(1):45-55.
    [5]
    Sosnik A,Menaker Raskin M.Polymeric micelles in mucosal drug delivery:challenges towards clinical translation[J].Biotechnol Adv,2015,33(3):1380-1392.
    [6]
    Dou JF,Zhang HQ,Liu XJ,et al.Preparation and evaluation in vitro and in vivo of docetaxel loaded mixed micelles for oral administration[J].Colloid Surface B,2014,114(2):20-27.
    [7]
    Martirosyan A,Olesen MJ,Howard KA.Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics[J].Adv Genet,2014,88:325-352.
    [8]
    Kim DH,Jahn A,Cho SJ,et al.Lyotropic liquid crystal systems in drug delivery:a review[J].Int J Pharm Investig,2015,45(1):1-11.
    [9]
    Li J,Wu L,Wu WJ,et al.A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate[J].Int J Pharm Investig,2013,455(1/2):75-84.
    [10]
    Marin L,Popescu MC,Zabulica A,et al.Chitosan as matrix for bio-polymer dispersed liquid crystal systems[J].Carbohydr Polymers,2013,95(1):16-24.
    [11]
    Kadhum WR, Sekiguchi S, Hijikuro I, et al. A novel chemical enhancer approach for transdermal drug delivery with C17-monoglycerol ester liquid crystal-forming lipid[J].J Oleo Sci,2017,66(5):443-454.
    [12]
    Martiel I,Baumann N,Vallooran JJ,et al.Oil and drug control the release rate from lyotropic liquid crystals[J].J Control Release,2015,204:78-84.
    [13]
    Park K.Lyotropic liquid crystal for long-term delivery of peptide drugs[J].J Control Release,2014,185(1):139-139.
    [14]
    Clogston J,Caffrey M.Controlling release from the lipidic cubic phase.Amino acids,peptides,proteins and nucleic acids[J].J Control Release,2005,107(1):97-111.
    [15]
    Rajabalaya R,Musa MN,Kifli N,et al.Oral and transdermal drug delivery systems:role of lipid-based lyotropic liquid crystals[J].Drug Des Dev Ther,2017,11:393-406.
    [16]
    Calixto GMF,Duque C,Aida KL,et al.Development and characterization of p1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms[J].Int J Nanomed,2018,13:31-41.
    [17]
    Reinitzer F.Beiträge zur Kenntniss des cholesterins[J].Chem,1888,9(1):421-441.
    [18]
    Lehmann O.Ueber fliessende Krystalle[J].Z Phys Chem,1889,4:462-472.
    [19]
    Darla MR,Varghese S.Synthesis and characterisation of azomethine class thermotropic liquid crystals and their application in nonlinear optics[J].Liq Cryst,2012,39(1):63-70.
    [20]
    Guo CY,Wang J,Cao FL,et al.Lyotropic liquid crystal systems in drug delivery[J].Drug Discov Today,2010,15(23/24):1032-1040.
    [21]
    Nguyen TH,Hanley T,Porter CJ,et al.Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water soluble drugs I.Phase behaviour in physiologically-relevant media[J].J Pharm Pharmacol,2010,62(7):844-855.
    [22]
    Boselli E,Pacetti D,Lucci P,et al.Characterization of phospholipid molecular species in the edible parts of bony fish and shellfish[J].J Agric Food Chem,2012,60(12):3234-3245.
    [23]
    Tian XH,Jiang Q,Xie MG.Research advancement of structures and apllication of lyotropic liquid crystals[J].Chem Res Appl(化学研究与应用),2002,14(2):119-122.
    [24]
    Zhaoa J,Wanga ZN,Weib XL,et al.Phase behaviour and rheological properties of the lamellar liquid crystals formed in dodecyl polyoxyethylene polyoxypropylene ether/water system[J].Indian J Chem,2011,50(5):641-649.
    [25]
    Spicer PT.Progress in liquid crystalline dispersions:cubosomes[J].Curr Opin Colloid In,2005,10(5):274-279.
    [26]
    Cervin C,Vandoolaeghe P,Nistor C,et al.A combined in vitro and in vivo study on the interactions between somatostatin and lipid-based liquid crystalline drug carriers and bilayers[J].Eur J Pharm Sci,2009,36(4/5):377-385.
    [27]
    Ma K,Wu LH,Zhang MY,et al.Advances in research on cubic and hexagonal liquid crystals as drug delivery system[J].Prog Chem(药学进展),2012,36(1):14-21.
    [28]
    Li,Gao Y,Zhang JJ,et al.Effect of poloxamer F127 and paeonol on GMO-based liquid crystal transformation[J].Acta Chim Sin,2011,69(13):1503-1508.
    [29]
    Boyd BJ,Whittaker DV,Khoo SM,et al.Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems[J].Int J Nanomedicine,2006,309(1/2):218-226.
    [30]
    Zhang XY,Ma D,Zheng YZ,et al.Effect of oleic acid and isosorbide mononitrate loading on the phase diagrams and in vitro release profiles of glyceryl monooleate liquid crystalline system[J].J China Pharm Univ(中国药科大学学报),2016,47(5):581-586.
    [31]
    Garti N,Libster D,Aserin A.Nano Science and Technology[M].Switzerland:Springer International Publishing,2014:355-414.
    [32]
    Bode JC, Kuntsche J, Funari SS, et al. Interaction of dispersed cubic phases with blood components[J].Int J Pharm,2013,448(1):87-95.
    [33]
    Hinton TM,Grusche F,Acharya D,et al.Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells[J].Toxicol Res,2013,3(1):11-22.
    [34]
    Ganem-Quintanar A,Quintanar-Guerrero D,Buri P.Monoolein:a review of the pharmaceutical applications[J].Drug Dev Ind Pharm,2000,26(8):809-820.
    [35]
    Zhang JJ,Fu M,Zhang MY,et al.Synthesis of oxidized glycerol monooleate-chitosan polymer and its hydrogel formation for sustained release of trimetazidine hydrochloride[J].Int J Pharm,2014,465(1/2):32-41.
    [36]
    Gao Y,Zheng YZ,Fu M,et al.Preparation of liquid crystal nanoparticle microsphere encapsulated by chitosan(壳聚糖包封液晶纳米粒所得微球及其制备方法):CN,105030732A[P].2015-11-11.
    [37]
    Chong JY,Mulet X,Waddington LJ,et al.High-throughput discovery of novel steric stabilizers for cubic lyotropic liquid crystal nanoparticle dispersions[J].Langmuir,2012,28(25):9223-9232.
    [38]
    Nemanic MK,Elias PM.In situ precipitation:a novel cytochemical technique for visualization of permeability pathways in mammalian stratum corneum[J].J Histochem Cytochem,1980,28(6):573-578.
    [39]
    Zhang Y,Zhang K,Guo T,et al.Transdermal baicalin delivery using diethylene glycol monoethyl ether-mediated cubic phase gel[J].Int J Nanomedicine,2015,479(1):219-226.
    [40]
    Li JC,Zhu N,Zhu JX,et al.Self-assembled cubic liquid crystalline nanoparticles for transdermal delivery of paeonol[J].Med Sci Monit,2015,21:3298-3310.
    [41]
    Kang MK,Kim Y,Gil S,et al.Effects of liquid crystal-based formulation on transdermal delivery of retinyl palmitate and proliferation of epidermal cells[J].Macromol Res,2016,24(1):44-50.
    [42]
    Bal SM,Ding Z,Van RE,et al.Advances in transcutaneous vaccine delivery:do all ways lead to Rome[J] ? J Control Release,2010,148(3):266-282.
    [43]
    Ono A,Ito S,Sakagami S,et al.Development of novel faster-dissolving microneedle patches for transcutaneous vaccine delivery[J].Pharmaceutics,2017,9(3):1-13.
    [44]
    Rattanapak T, Young K, Rades T, et al. Comparative study of liposomes,transfersomes,ethosomes and cubosomes for transcutaneous immunisation:characterisation and in vitro skin penetration[J].J Pharm Pharmacol,2012,64(11):1560-1569.
    [45]
    Rattanapak T,Birchall J,Young K,et al.Transcutaneous immunization using microneedles and cubosomes:mechanistic investigations using optical coherence tomography and two-photon microscopy[J].J Control Release,2013,172(3):894-903.
    [46]
    Carvalho FC,Campos ML,Peccinini RG,et al.Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy[J].Eur J Pharm Biopharm,2013,84(1):219-227.
    [47]
    Liu QF,Shen YH,Chen J,et al.Nose-to-brain transport pathways of wheat germ agglutinin conjugated PEG-PLA nanoparticles[J].Pharm Res,2012,29(2):546-558.
    [48]
    Abdel-Bar HM,Abdel-Reheem AY,Awad GA,et al.Evaluation of brain targeting and mucosal integrity of nasally administrated nanostructured carriers of a CNS active drug,clonazepam[J].J Pharm Pharm Sci,2013,16(3):456-469.
    [49]
    Qian S, Wong CY, Zuo Z. Development,characterization and application of in situ gel systems for intranasal delivery of tacrine[J].Int J Nanomedicine,2014,468(1/2):272-282.
    [50]
    Souza C,Watanabe E,Borgheticardoso LN,et al.Mucoadhesive system formed by liquid crystals for buccal administration of poly(hexamethylene biguanide)hydrochloride[J].J Pharm Sci,2014,103(12):3914-3423.
    [51]
    Salmazi R,Calixto G,Bernegossi J,et al.A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis[J].Int J Nanomedicine,2015,10:4815-4824.
    [52]
    dos Santos Ramos MA,Calixto G,de Toledo LG,et al.Liquid crystal precursor mucoadhesive system as a strategy to improve the prophylactic action of Syngonanthus nitens(Bong.)Ruhland against infection by Candida krusei[J].Int J Nanomedicine,2015,10:7455-7466.
  • Related Articles

    [1]MO Xinhe, WAN Youqiong, WANG Sibu, MA Qin, ZHANG Jun, CHEN Ying. Ameliorative effect of baicalin nanomedicine on hydrogen peroxide-induced senescence of human umbilical vein vascular endothelial cells[J]. Journal of China Pharmaceutical University, 2025, 56(1): 110-118. DOI: 10.11665/j.issn.1000-5048.2024052101
    [2]WANG Dandan, KORAMAGAZI Arouna, MAO Yong, YU Feng. Rhein induces apoptosis in L-02 cells via reactive oxygen species-independent endoplasmic reticulum stress pathway[J]. Journal of China Pharmaceutical University, 2016, 47(2): 215-221. DOI: 10.11665/j.issn.1000-5048.20160215
    [3]SHEN Kai, KOU Junping, YU Boyang. Research advances in the mechanisms of active components in Chinese materia medica against oxidative stress-induced neuronal apoptosis[J]. Journal of China Pharmaceutical University, 2015, 46(5): 532-540. DOI: 10.11665/j.issn.1000-5048.20150503
    [4]WANG Li, LI Mingdan, LU Yi, ZHANG Chaofeng, XU Xianghong, ZHANG Mian. Mechanism of apoptosis induced by peptide-rich fraction from the root of Aster tataricus in liver L-02 cells[J]. Journal of China Pharmaceutical University, 2014, 45(4): 469-474. DOI: 10.11665/j.issn.1000-5048.20140415
    [5]QI Cuiling, ZHOU Xinlei, YE Jie, YANG Yang, ZHANG Qianqian, LI Jiangchao, WANG Lijing. Andrographolide induces Tb cell apoptosis by activating Caspase-3/PARP[J]. Journal of China Pharmaceutical University, 2013, 44(6): 559-562. DOI: 10.11665/j.issn.1000-5048.20130614
    [6]LIU Zhi-yong, NIU Zhi-yuan, ZHENG Wei, SHEN Ping-ping. Effects of p-ERK1/2 on nitric oxide donor induced apoptosis of HepG2 cells[J]. Journal of China Pharmaceutical University, 2012, 43(6): 530-534.
    [7]Inhibition of Hydrogen Peroxide-induced PC12 Cell Apoptosis by Modafinil[J]. Journal of China Pharmaceutical University, 2004, (3): 77-81.
    [8]Protective Effects of MCl-186 on Apoptosis in PC12 Cells Induced by H2O2[J]. Journal of China Pharmaceutical University, 2004, (1): 62-66.
    [9]Effects of Crocetin on the Myocardial Cell Damages Due to Oxidative Stress[J]. Journal of China Pharmaceutical University, 2003, (5): 66-69.
    [10]Inhibition of Puerarin on the H_2O_2-induced Apoptosis of Smooth Muscle Cells[J]. Journal of China Pharmaceutical University, 2002, (3): 75-78.

Catalog

    Article views (1259) PDF downloads (2002) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return