• 中国精品科技期刊
  • 中国高校百佳科技期刊
  • 中国中文核心期刊
  • 中国科学引文数据库核心期刊
Advanced Search
ZHANG Weilin, WANG Xinyi, YAN Fang. Advances of relationship between protein O-GlcNAcylation and glucose metabolism in tumors[J]. Journal of China Pharmaceutical University, 2019, 50(2): 127-134. DOI: 10.11665/j.issn.1000-5048.20190201
Citation: ZHANG Weilin, WANG Xinyi, YAN Fang. Advances of relationship between protein O-GlcNAcylation and glucose metabolism in tumors[J]. Journal of China Pharmaceutical University, 2019, 50(2): 127-134. DOI: 10.11665/j.issn.1000-5048.20190201

Advances of relationship between protein O-GlcNAcylation and glucose metabolism in tumors

More Information
  • O-GlcNAcylation is the addition of a single N-acetylglucosamine(GlcNAc)moiety to the hydroxyl groups of serine or threonine residues of nuclear and cytoplasmic proteins. The transcription factors, kinases of the metabolic pathways and some cytoplasmic enzymes can be O-GlcNAcylated to affect cell transcription, signal transduction, cell metabolism and other biological functions. Abnormal glucose metabolism of tumors has been a hotspot in the research field of tumor pathogenesis and therapeutic targets recently. O-GlcNAclation regulates the glucose metabolism of tumor by affecting the activity of kinases in the metabolic pathway, which is closely associated with the abnormal glucose metabolism of tumor. The abnormal O-GlcNAcylation is one of the potential reasons of cancer. In this review, in order to provide a theoretical reference for developing anti-tumor targets and drugs targeting O-GlcNAc modification, we briefly summarized how O-GlcNAcylation regulated glucose metabolism on glucose metabolism, glucose uptake, glycolysis, pentose phosphate pathway and tricarboxylic acid cycle in cancer cell.
  • [1]
    Uhlen M,Fagerberg L,Hallstrom BM,et al.Tissue-based map of the human proteome[J].Science,2015,347(6220):1260419.
    [2]
    Torres MP,Dewhurst H,Sundararaman N.Proteome-wide structural analysis of PTM hotspots reveals regulatory elements predicted to impact biological function and disease[J].Mol Cell Proteomics,2016,15(11):3513-3528.
    [3]
    Cattaneo A,Chirichella M.Targeting the post-translational proteome with intrabodies[J].Trends Biotechnol,2018,Epub ahead of print.
    [4]
    Cummings RD,Pierce JM.The challenge and promise of glycomics[J].Chem Biol,2014,21(1):1-15.
    [5]
    Tan EP,Mcgreal SR,Graw S,et al.Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism[J].J Biol Chem,2017,292(36):14940-14962.
    [6]
    Park S,Lee Y,Pak JW,et al.O-GlcNAc modification is essential for the regulation of autophagy in drosophila melanogaster[J].Cell Mol Life Sci,2015,72(16):3173-3183.
    [7]
    Akan I,Stichelen SOV,Bond MR,et al.Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration[J].J Neurochem,2018,144(1):7-34.
    [8]
    Abramowitz LK,Hanover JA.T cell development and the physiological role of O-GlcNAc[J].FEBS Lett,2018,592(23):3943-3949.
    [9]
    De Jesus T,Shukla S,Ramakrishnan P.Too sweet to resist:control of immune cell function by O-GlcNAcylation[J].Cell Immunol,2018,333:85-92.
    [10]
    Deberardinis RJ,Thompson CB.Cellular metabolism and disease:What do metabolic outliers teach us[J]?Cell,2012,148(6):1132-1144.
    [11]
    Galhardo M,Sinkkonen L,Berninger P,et al.Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network[J].Nucleic Acids Res,2014,42(3):1474-1496.
    [12]
    Webb BA,Forouhar F,Szu FE,et al.Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations[J].Nature,2015,523(7558):111-114.
    [13]
    Ouyang XS,Han SN,Zhang JY,et al.Digoxin suppresses pyruvate kinase M2-promoted HIF-1α transactivation in steatohepatitis[J].Cell Metab,2018,27(5):1156.
    [14]
    Rao XJ,Duan XT,Mao WM,et al.O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth[J].Nat Commun,2015,6:8468.
    [15]
    Li TL,Li XH,Attri KS,et al.O-GlcNAc transferase links glucose metabolism to MAVS-mediated antiviral innate immunity[J].Cell Host Microbe,2018,24(6):791-803.
    [16]
    Yang AQ, Li DY, Chi LL, et al. Validation,identification,and biological consequences of the site-specific O-GlcNAcylation dynamics of carbohydrate-responsive element-binding protein(ChREBP)[J].Mol Cell Proteomics,2017,16(7):1233-1243.
    [17]
    Hardiville S,Hart GW.Nutrient regulation of signaling,transcription,and cell physiology by O-GlcNAcylation[J].Cell Metab,2014,20(2):208-213.
    [18]
    Yang XY,Qian KV.Protein O-GlcNAcylation:emerging mechanisms and functions[J].Nat Rev Mol Cell Biol,2017,18(7):452-465.
    [19]
    Banerjee PS,Lagerlof O,Hart GW.Roles of O-GlcNAc in chronic diseases of aging[J].Mol Aspects Med,2016,51:1-15.
    [20]
    Tramutola A,Sharma N,Barone E,et al.Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer′s disease[J].BBA-Mol Basis Dis,2018,1864(10):3309-3321.
    [21]
    Torres CR,Hart GW.Topography and polypeptide distribution of terminal N-Acetylglucosamine residues on the surfaces of intact lymphocytes- fvidence for O-linked glcnac[J].J Biol Chem,1984,259(5):3308-3317.
    [22]
    Zachara NE.Critical observations that shaped our understanding of the function(s)of intracellular glycosylation(O-GlcNAc)[J].FEBS Lett,2018,592(23):3950-3975.
    [23]
    Miguez JSG,Dela Justina V,Bressan AFM,et al.O-Glycosylation with O-linked beta-N-acetylglucosamine increases vascular contraction:possible modulatory role on interleukin-10 signaling pathway[J].Life Sci,2018,209:78-84.
    [24]
    Marotta NP,Lin YH,Lewis YE,et al.O-GlcNAc modification blocks the aggregation and toxicity of the protein alpha-synuclein associated with Parkinson′s disease[J].Nat Chem,2015,7(11):913-920.
    [25]
    Sullivan LB,Gui DY,Heiden MGV.Altered metabolite levels in cancer:implications for tumour biology and cancer therapy[J].Nat Rev Cancer,2016,16(11):680-693.
    [26]
    Pavlova NN,Thompson CB.The emerging hallmarks of cancer metabolism[J].Cell Metab,2016,23(1):27-47.
    [27]
    Goodpaster BH,Sparks LM.Metabolic flexibility in health and disease[J].Cell Metab,2017,25(5):1027-1036.
    [28]
    Kalyanaraman B,Cheng G,Hardy M,et al.A review of the basics of mitochondrial bioenergetics,metabolism,and related signaling pathways in cancer cells:therapeutic targeting of tumor mitochondria with lipophilic cationic compounds[J].Redox Biology,2018,14:316-327.
    [29]
    Elaskalani O, Falasca M, Moran N, et al. The role of platelet-derived ADP and ATP in promoting pancreatic cancer cell survival and gemcitabine resistance[J].Cancers,2017,9(10):E142.
    [30]
    Warburg O,Wind F,Negelein E.The metabolism of tumors in the body[J].J Gen Physiol,1927,8(6):519-530.
    [31]
    Barron CC,Bilan PJ,Tsakiridis T,et al.Facilitative glucose transporters:implications for cancer detection,prognosis and treatment[J].Metabolism,2016,65(2):124-139.
    [32]
    Zhou Q,Yang XZ,Xiong MR,et al.Chloroquine increases glucose uptake via enhancing GLUT4 translocation and fusion with the plasma membrane in L6 cells[J].Cell Physiol Biochem,2016,38(5):2030-2040.
    [33]
    Buse MG,Robinson KA,Marshall BA,et al.Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles[J].Am J Physiol Endocrinol Metab,2002,283(2):E241-E250.
    [34]
    Park SY,Ryu JW,Lee W.O-GlcNAc modific ation on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes[J].Exp Mol Med,2005,37(3):220-229.
    [35]
    Masoud GN, Li W. HIF-1 alpha pathway: role, regulation and intervention for cancer therapy[J].Acta Pharm Sin B,2015,5(5):378-389.
    [36]
    Ferrer CM,Lynch TP,Sodi VL,et al.O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway[J].Mol Cell,2014,54(5):820-831.
    [37]
    Sodi VL,Bacigalupa ZA,Ferrer CM,et al.Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation[J].Oncogene,2018,37(7):924-934.
    [38]
    Shimizu M,Tanaka N.IL-8-induced O-GlcNAc modification via GLUT3 and GFAT regulates cancer stem cell-like properties in colon and lung cancer cells[J].Oncogene,2018.38(9):1520-1533.
    [39]
    Semenza GL.Hypoxia-inducible factors:coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype[J].EMBO J,2017,36(3):252-259.
    [40]
    Yi W,Clark PM,Mason DE,et al.Phosphofructokinase 1 glycosylation regulates cell growth and metabolism[J].Science,2012,337(6097):975-980.
    [41]
    Kishore M,Cheung KCP,Fu HM,et al.Regulatory T cell migration is dependent on glucokinase-mediated glycolysis[J].Immunity,2017,47(5):875-889.
    [42]
    Baldini SF,Steenackers A,Olivier-Van Stichelen S,et al.Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation[J].Biochem Biophys Res Commun,2016,478(2):942-948.
    [43]
    Lee JH,Liu R,Li J,et al.Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis[J].Nat Commun,2017,8(1):949.
    [44]
    Stincone A,Prigione A,Cramer T,et al.The return of metabolism:biochemistry and physiology of the pentose phosphate pathway[J].Biol Rev,2015,90(3):927-963.
    [45]
    Wang Y,Liu J,Jin X,et al.GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect[J].Proc Natl Acad Sci U S A,2017,114(52):13732-13737.
    [46]
    Cieniewski-Bernard C,Bastide B,Lefebvre T,et al.Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry[J].Mol Cell Proteomics,2004,3(6):577-585.
    [47]
    Woo CM,Lund PJ,Huang AC,et al.Mapping and quantification of over 2000 O-linked glycopeptides in activated human T cells with isotope-targeted glycoproteomics(Isotag)[J].Mol Cell Proteomics,2018,17(4):764-775.
    [48]
    Yehezkel G,Cohen L,Kliger A,et al.O-Linked beta-N-Acetylglucosaminylation(O-GlcNAcylation)in primary and metastatic colorectal cancer clones and effect of N-acetyl-beta-D-glucosaminidase silencing on cell phenotype and transcriptome[J].J Biol Chem,2012,287(34):28755-28769.
    [49]
    Lucena MC,Carvalho-Cruz P,Donadio JL,et al.Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation[J].J Biol Chem,2016,291:12917-12929.
    [50]
    Hui S,Ghergurovich JM,Morscher RJ,et al.Glucose feeds the TCA cycle via circulating lactate[J].Nature,2017,551(7678):115-118.
    [51]
    Tan EP,Villar MT,E L,et al.Altering O-linked beta-N-Acetylglucosamine cycling disrupts mitochondrial function[J].J Biol Chem,2014,289(21):14719-14730.
    [52]
    Ma JF,Banerjee P,Whelan SA,et al.Comparative proteomics reveals dysregulated mitochondrial O-GlcNAcylation in diabetic hearts[J].J Proteome Res,2016,15(7):2254-2264.
    [53]
    Wang T,Yu QJ,Li JJ,et al.O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency[J].Nat Cell Biol,2017,19(7):833-843.
    [54]
    Jin L,Alesi GN,Kang S.Glutaminolysis as a target for cancer therapy[J].Oncogene,2016,35(28):3619-3625.
    [55]
    Altman BJ,Stine ZE,Dang CV.From Krebs to clinic:glutamine metabolism to cancer therapy[J].Nat Rev Cancer,2016,16(12):773-773.
    [56]
    Park HW,Kim YC,Yu B,et al.Alternative wnt signaling activates YAP/TAZ[J].Cell,2015,162(4):780-794.
    [57]
    Kim W,Khan SK,Gvozdenovic-Jeremic J,et al.Hippo signaling interactions with wnt/beta-catenin and notch signaling repress liver tumorigenesis[J].J Clin Invest,2017,127(1):137-152.
    [58]
    Lee DH,Park JO,Kim TS,et al.LATS-YAP/TAZ controls lineage specification by regulating TGFbeta signaling and Hnf4alpha expression during liver development[J].Nat Commun,2016,7:11961.
    [59]
    Zhang X,Qiao YX,Wu Q,et al.The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis[J].Nat Commun,2017,8:15280.
    [60]
    Clark PM,Dweck JF,Mason DE,et al.Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins[J].J Am Chem Soc,2008,130(35):11576-11577.
    [61]
    Sun RC,Denko NC.Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth[J].Cell Metab,2014,19(2):285-292.
    [62]
    Ren NSX, Ji M, Tokar EJ, et al. Haploinsufficiency of SIRT1 enhances glutamine metabolism and promotes cancer development[J].Curr Biol,2017,27(4):483-494.
    [63]
    Sun HB.Drug discovery based on pharmacological interference with glycometabolism[J].J China Pharm Univ(中国药科大学学报),2006,37(1):1-8.
  • Related Articles

    [1]SUN Chenkai, CHEN Xin, CHENG Hao, ZHANG Xiangze, YANG Xiaoyu, ZHOU Jianping, DING Yang. Advances of research on oxygen-enhancing nano-delivery system for photodynamic therapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 387-397. DOI: 10.11665/j.issn.1000-5048.20210401
    [2]LI Fang, XIN Junbo, SHI Qin, MAO Chengqiong. Advances in near infrared photoimmunotherapy of tumor[J]. Journal of China Pharmaceutical University, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604
    [3]CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404
    [4]YANG Ruocong, DUAN Feipeng, CHAO Jiahong, TIAN Pengpeng, YAN Zhiyong, LI Shaojing. Advances of microRNA activity in innate immunity[J]. Journal of China Pharmaceutical University, 2017, 48(4): 396-406. DOI: 10.11665/j.issn.1000-5048.20170403
    [5]XIN Minhang, ZHANG Sanqi. Advances in PI3Kδ selective inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(5): 503-510. DOI: 10.11665/j.issn.1000-5048.20160501
    [6]JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418
    [7]YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417
    [8]CHEN Qingyu, ZHOU Jianping, HUO Meirong. Advances in the nanotechnology-based drug delivery systems of silymarin[J]. Journal of China Pharmaceutical University, 2015, 46(3): 376-384. DOI: 10.11665/j.issn.1000-5048.20150320
    [9]SUN Zhan-yi, CAI Hui, HUANG Zhi-hua, SHI Lei, CHEN Yong-xiang, LI Yan-mei. Advances of glycopeptide-associated tumor vaccines[J]. Journal of China Pharmaceutical University, 2012, 43(2): 97-106.
    [10]XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106.

Catalog

    Article views (1485) PDF downloads (1706) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return