Citation: | ZHANG Weilin, WANG Xinyi, YAN Fang. Advances of relationship between protein O-GlcNAcylation and glucose metabolism in tumors[J]. Journal of China Pharmaceutical University, 2019, 50(2): 127-134. DOI: 10.11665/j.issn.1000-5048.20190201 |
[1] |
Uhlen M,Fagerberg L,Hallstrom BM,et al.Tissue-based map of the human proteome[J].Science,2015,347(6220):1260419.
|
[2] |
Torres MP,Dewhurst H,Sundararaman N.Proteome-wide structural analysis of PTM hotspots reveals regulatory elements predicted to impact biological function and disease[J].Mol Cell Proteomics,2016,15(11):3513-3528.
|
[3] |
Cattaneo A,Chirichella M.Targeting the post-translational proteome with intrabodies[J].Trends Biotechnol,2018,Epub ahead of print.
|
[4] |
Cummings RD,Pierce JM.The challenge and promise of glycomics[J].Chem Biol,2014,21(1):1-15.
|
[5] |
Tan EP,Mcgreal SR,Graw S,et al.Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism[J].J Biol Chem,2017,292(36):14940-14962.
|
[6] |
Park S,Lee Y,Pak JW,et al.O-GlcNAc modification is essential for the regulation of autophagy in drosophila melanogaster[J].Cell Mol Life Sci,2015,72(16):3173-3183.
|
[7] |
Akan I,Stichelen SOV,Bond MR,et al.Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration[J].J Neurochem,2018,144(1):7-34.
|
[8] |
Abramowitz LK,Hanover JA.T cell development and the physiological role of O-GlcNAc[J].FEBS Lett,2018,592(23):3943-3949.
|
[9] |
De Jesus T,Shukla S,Ramakrishnan P.Too sweet to resist:control of immune cell function by O-GlcNAcylation[J].Cell Immunol,2018,333:85-92.
|
[10] |
Deberardinis RJ,Thompson CB.Cellular metabolism and disease:What do metabolic outliers teach us[J]?Cell,2012,148(6):1132-1144.
|
[11] |
Galhardo M,Sinkkonen L,Berninger P,et al.Integrated analysis of transcript-level regulation of metabolism reveals disease-relevant nodes of the human metabolic network[J].Nucleic Acids Res,2014,42(3):1474-1496.
|
[12] |
Webb BA,Forouhar F,Szu FE,et al.Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations[J].Nature,2015,523(7558):111-114.
|
[13] |
Ouyang XS,Han SN,Zhang JY,et al.Digoxin suppresses pyruvate kinase M2-promoted HIF-1α transactivation in steatohepatitis[J].Cell Metab,2018,27(5):1156.
|
[14] |
Rao XJ,Duan XT,Mao WM,et al.O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth[J].Nat Commun,2015,6:8468.
|
[15] |
Li TL,Li XH,Attri KS,et al.O-GlcNAc transferase links glucose metabolism to MAVS-mediated antiviral innate immunity[J].Cell Host Microbe,2018,24(6):791-803.
|
[16] |
Yang AQ, Li DY, Chi LL, et al. Validation,identification,and biological consequences of the site-specific O-GlcNAcylation dynamics of carbohydrate-responsive element-binding protein(ChREBP)[J].Mol Cell Proteomics,2017,16(7):1233-1243.
|
[17] |
Hardiville S,Hart GW.Nutrient regulation of signaling,transcription,and cell physiology by O-GlcNAcylation[J].Cell Metab,2014,20(2):208-213.
|
[18] |
Yang XY,Qian KV.Protein O-GlcNAcylation:emerging mechanisms and functions[J].Nat Rev Mol Cell Biol,2017,18(7):452-465.
|
[19] |
Banerjee PS,Lagerlof O,Hart GW.Roles of O-GlcNAc in chronic diseases of aging[J].Mol Aspects Med,2016,51:1-15.
|
[20] |
Tramutola A,Sharma N,Barone E,et al.Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer′s disease[J].BBA-Mol Basis Dis,2018,1864(10):3309-3321.
|
[21] |
Torres CR,Hart GW.Topography and polypeptide distribution of terminal N-Acetylglucosamine residues on the surfaces of intact lymphocytes- fvidence for O-linked glcnac[J].J Biol Chem,1984,259(5):3308-3317.
|
[22] |
Zachara NE.Critical observations that shaped our understanding of the function(s)of intracellular glycosylation(O-GlcNAc)[J].FEBS Lett,2018,592(23):3950-3975.
|
[23] |
Miguez JSG,Dela Justina V,Bressan AFM,et al.O-Glycosylation with O-linked beta-N-acetylglucosamine increases vascular contraction:possible modulatory role on interleukin-10 signaling pathway[J].Life Sci,2018,209:78-84.
|
[24] |
Marotta NP,Lin YH,Lewis YE,et al.O-GlcNAc modification blocks the aggregation and toxicity of the protein alpha-synuclein associated with Parkinson′s disease[J].Nat Chem,2015,7(11):913-920.
|
[25] |
Sullivan LB,Gui DY,Heiden MGV.Altered metabolite levels in cancer:implications for tumour biology and cancer therapy[J].Nat Rev Cancer,2016,16(11):680-693.
|
[26] |
Pavlova NN,Thompson CB.The emerging hallmarks of cancer metabolism[J].Cell Metab,2016,23(1):27-47.
|
[27] |
Goodpaster BH,Sparks LM.Metabolic flexibility in health and disease[J].Cell Metab,2017,25(5):1027-1036.
|
[28] |
Kalyanaraman B,Cheng G,Hardy M,et al.A review of the basics of mitochondrial bioenergetics,metabolism,and related signaling pathways in cancer cells:therapeutic targeting of tumor mitochondria with lipophilic cationic compounds[J].Redox Biology,2018,14:316-327.
|
[29] |
Elaskalani O, Falasca M, Moran N, et al. The role of platelet-derived ADP and ATP in promoting pancreatic cancer cell survival and gemcitabine resistance[J].Cancers,2017,9(10):E142.
|
[30] |
Warburg O,Wind F,Negelein E.The metabolism of tumors in the body[J].J Gen Physiol,1927,8(6):519-530.
|
[31] |
Barron CC,Bilan PJ,Tsakiridis T,et al.Facilitative glucose transporters:implications for cancer detection,prognosis and treatment[J].Metabolism,2016,65(2):124-139.
|
[32] |
Zhou Q,Yang XZ,Xiong MR,et al.Chloroquine increases glucose uptake via enhancing GLUT4 translocation and fusion with the plasma membrane in L6 cells[J].Cell Physiol Biochem,2016,38(5):2030-2040.
|
[33] |
Buse MG,Robinson KA,Marshall BA,et al.Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles[J].Am J Physiol Endocrinol Metab,2002,283(2):E241-E250.
|
[34] |
Park SY,Ryu JW,Lee W.O-GlcNAc modific ation on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes[J].Exp Mol Med,2005,37(3):220-229.
|
[35] |
Masoud GN, Li W. HIF-1 alpha pathway: role, regulation and intervention for cancer therapy[J].Acta Pharm Sin B,2015,5(5):378-389.
|
[36] |
Ferrer CM,Lynch TP,Sodi VL,et al.O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway[J].Mol Cell,2014,54(5):820-831.
|
[37] |
Sodi VL,Bacigalupa ZA,Ferrer CM,et al.Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation[J].Oncogene,2018,37(7):924-934.
|
[38] |
Shimizu M,Tanaka N.IL-8-induced O-GlcNAc modification via GLUT3 and GFAT regulates cancer stem cell-like properties in colon and lung cancer cells[J].Oncogene,2018.38(9):1520-1533.
|
[39] |
Semenza GL.Hypoxia-inducible factors:coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype[J].EMBO J,2017,36(3):252-259.
|
[40] |
Yi W,Clark PM,Mason DE,et al.Phosphofructokinase 1 glycosylation regulates cell growth and metabolism[J].Science,2012,337(6097):975-980.
|
[41] |
Kishore M,Cheung KCP,Fu HM,et al.Regulatory T cell migration is dependent on glucokinase-mediated glycolysis[J].Immunity,2017,47(5):875-889.
|
[42] |
Baldini SF,Steenackers A,Olivier-Van Stichelen S,et al.Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation[J].Biochem Biophys Res Commun,2016,478(2):942-948.
|
[43] |
Lee JH,Liu R,Li J,et al.Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis[J].Nat Commun,2017,8(1):949.
|
[44] |
Stincone A,Prigione A,Cramer T,et al.The return of metabolism:biochemistry and physiology of the pentose phosphate pathway[J].Biol Rev,2015,90(3):927-963.
|
[45] |
Wang Y,Liu J,Jin X,et al.GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect[J].Proc Natl Acad Sci U S A,2017,114(52):13732-13737.
|
[46] |
Cieniewski-Bernard C,Bastide B,Lefebvre T,et al.Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry[J].Mol Cell Proteomics,2004,3(6):577-585.
|
[47] |
Woo CM,Lund PJ,Huang AC,et al.Mapping and quantification of over 2000 O-linked glycopeptides in activated human T cells with isotope-targeted glycoproteomics(Isotag)[J].Mol Cell Proteomics,2018,17(4):764-775.
|
[48] |
Yehezkel G,Cohen L,Kliger A,et al.O-Linked beta-N-Acetylglucosaminylation(O-GlcNAcylation)in primary and metastatic colorectal cancer clones and effect of N-acetyl-beta-D-glucosaminidase silencing on cell phenotype and transcriptome[J].J Biol Chem,2012,287(34):28755-28769.
|
[49] |
Lucena MC,Carvalho-Cruz P,Donadio JL,et al.Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation[J].J Biol Chem,2016,291:12917-12929.
|
[50] |
Hui S,Ghergurovich JM,Morscher RJ,et al.Glucose feeds the TCA cycle via circulating lactate[J].Nature,2017,551(7678):115-118.
|
[51] |
Tan EP,Villar MT,E L,et al.Altering O-linked beta-N-Acetylglucosamine cycling disrupts mitochondrial function[J].J Biol Chem,2014,289(21):14719-14730.
|
[52] |
Ma JF,Banerjee P,Whelan SA,et al.Comparative proteomics reveals dysregulated mitochondrial O-GlcNAcylation in diabetic hearts[J].J Proteome Res,2016,15(7):2254-2264.
|
[53] |
Wang T,Yu QJ,Li JJ,et al.O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency[J].Nat Cell Biol,2017,19(7):833-843.
|
[54] |
Jin L,Alesi GN,Kang S.Glutaminolysis as a target for cancer therapy[J].Oncogene,2016,35(28):3619-3625.
|
[55] |
Altman BJ,Stine ZE,Dang CV.From Krebs to clinic:glutamine metabolism to cancer therapy[J].Nat Rev Cancer,2016,16(12):773-773.
|
[56] |
Park HW,Kim YC,Yu B,et al.Alternative wnt signaling activates YAP/TAZ[J].Cell,2015,162(4):780-794.
|
[57] |
Kim W,Khan SK,Gvozdenovic-Jeremic J,et al.Hippo signaling interactions with wnt/beta-catenin and notch signaling repress liver tumorigenesis[J].J Clin Invest,2017,127(1):137-152.
|
[58] |
Lee DH,Park JO,Kim TS,et al.LATS-YAP/TAZ controls lineage specification by regulating TGFbeta signaling and Hnf4alpha expression during liver development[J].Nat Commun,2016,7:11961.
|
[59] |
Zhang X,Qiao YX,Wu Q,et al.The essential role of YAP O-GlcNAcylation in high-glucose-stimulated liver tumorigenesis[J].Nat Commun,2017,8:15280.
|
[60] |
Clark PM,Dweck JF,Mason DE,et al.Direct in-gel fluorescence detection and cellular imaging of O-GlcNAc-modified proteins[J].J Am Chem Soc,2008,130(35):11576-11577.
|
[61] |
Sun RC,Denko NC.Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth[J].Cell Metab,2014,19(2):285-292.
|
[62] |
Ren NSX, Ji M, Tokar EJ, et al. Haploinsufficiency of SIRT1 enhances glutamine metabolism and promotes cancer development[J].Curr Biol,2017,27(4):483-494.
|
[63] |
Sun HB.Drug discovery based on pharmacological interference with glycometabolism[J].J China Pharm Univ(中国药科大学学报),2006,37(1):1-8.
|
[1] | SUN Chenkai, CHEN Xin, CHENG Hao, ZHANG Xiangze, YANG Xiaoyu, ZHOU Jianping, DING Yang. Advances of research on oxygen-enhancing nano-delivery system for photodynamic therapy[J]. Journal of China Pharmaceutical University, 2021, 52(4): 387-397. DOI: 10.11665/j.issn.1000-5048.20210401 |
[2] | LI Fang, XIN Junbo, SHI Qin, MAO Chengqiong. Advances in near infrared photoimmunotherapy of tumor[J]. Journal of China Pharmaceutical University, 2020, 51(6): 664-674. DOI: 10.11665/j.issn.1000-5048.20200604 |
[3] | CHEN Ye, YIN Jun, YAO Wenbing, GAO Xiangdong. Advances of DNA-based nanomaterials in tumor therapy[J]. Journal of China Pharmaceutical University, 2020, 51(4): 406-417. DOI: 10.11665/j.issn.1000-5048.20200404 |
[4] | YANG Ruocong, DUAN Feipeng, CHAO Jiahong, TIAN Pengpeng, YAN Zhiyong, LI Shaojing. Advances of microRNA activity in innate immunity[J]. Journal of China Pharmaceutical University, 2017, 48(4): 396-406. DOI: 10.11665/j.issn.1000-5048.20170403 |
[5] | XIN Minhang, ZHANG Sanqi. Advances in PI3Kδ selective inhibitors[J]. Journal of China Pharmaceutical University, 2016, 47(5): 503-510. DOI: 10.11665/j.issn.1000-5048.20160501 |
[6] | JIANG Lu, CHEN Dandan, SUN Minjie, PING Qineng, ZHANG Can. Advances of wax matrix tablets[J]. Journal of China Pharmaceutical University, 2016, 47(4): 497-502. DOI: 10.11665/j.issn.1000-5048.20160418 |
[7] | YAO Guilin, WANG Haiyong, LU Tao. Advances of the uricosuric drugs[J]. Journal of China Pharmaceutical University, 2016, 47(4): 491-496. DOI: 10.11665/j.issn.1000-5048.20160417 |
[8] | CHEN Qingyu, ZHOU Jianping, HUO Meirong. Advances in the nanotechnology-based drug delivery systems of silymarin[J]. Journal of China Pharmaceutical University, 2015, 46(3): 376-384. DOI: 10.11665/j.issn.1000-5048.20150320 |
[9] | SUN Zhan-yi, CAI Hui, HUANG Zhi-hua, SHI Lei, CHEN Yong-xiang, LI Yan-mei. Advances of glycopeptide-associated tumor vaccines[J]. Journal of China Pharmaceutical University, 2012, 43(2): 97-106. |
[10] | XU Si-sheng, ZHANG Hui-bin, ZHOU Jin-pei, HUANG Jian-jun. Advances of new antidiabetic drugs[J]. Journal of China Pharmaceutical University, 2011, 42(2): 97-106. |